MATH 160 Session #6

Given a quadratic function of the form $f(x) = a(x - h)^2 + k$, the graph of f is a
that opens if a > 0, opens if a < 0 and has its
vertex at the point (,).
How can we describe the location and orientation of a quadratic function of the form $f(x) = ax^2 + bx + c$?
Let's do some algebra.
$a(x-h)^2 + k = a(x^2 - \underline{\hspace{1cm}} x + \underline{\hspace{1cm}}) + k$
$= \mathbf{a}\mathbf{x}^2 - \underline{\qquad} \mathbf{x} + \underline{\qquad} + \mathbf{k}$
$= \mathbf{a}\mathbf{x}^2 + \underline{}\mathbf{x} + [\underline{}\mathbf{k}]$
In this instance,
b = Solving for h we obtain h =
c = Solving for k we obtain k =
In conclusion, a quadratic function of the form $f(x) = ax^2 + bx + c$ has a graph in the
shape of a that opens if a > 0, opens if a < 0, and has
its vertex at the point (,).
For example, here is a sketch of the graph of $f(x) = -2x^2 + 12x - 3$.