Suppose \$1000 is deposited in an account that pays interest at the rate 6% per annum compounded once a year. Assuming no further deposits or withdrawals are made let A(t) denote the value of the account, to the nearest dollar, t years after the initial deposit.

Complete the following table.

t	0	1	2	3	4	5	6	7	8
A(t)	\$1000								
ΔA(t)									

Derive an explicit functional rule for A(t) in terms of t.

Suppose \$1000 is deposited in an account that pays interest at the rate 6% per annum compounded monthly. Assuming no further deposits or withdrawals are made let A(t) denote the value of the account, to the nearest dollar, t years after the initial deposit.

Complete the following tables.

t	0	1/12	2/12	3/12	4/12	5/12	6/12	7/12	8/12
A(t)	\$1000								
ΔA(t)									
						1		F	

t	9/12	10/12	11/12	1	13/12	14/12	15/12	16/12	17/12
A(t)									
ΔA(t)									

Derive an explicit functional rule for A(t) in terms of t.