Using Matrices to Solve Systems of Equations

Teacher's Name: Mr. Edward C. Ennels

School: Salisbury School

E-mail Address: eddiejhv@hotmail.com
Subject Area: Algebra

- Discrete Mathematics
- Representation
- Problem Solving

Grade Level: 8

Topic: Systems of Linear Equations
Purpose: In this lesson, students will solve systems of linear equation using matrices

Objectives:

Lesson One-Students will set up a system and practice row operations
Lesson Two-Students will solve a system by pivoting (row-reduced echelon form)
Lesson Three-Student will use matrices to solve real world problems

Student Materials:

- Plain Paper
- pencils
- calculators - one for each student or pair of students

Time Required: 3 days (45 minutes per lesson)

Lesson Procedure:

Students should have a firm understanding of the following:
${ }^{\circledR}$ Linear Equations in Two Unknowns
Solutions of Linear Equations in Two Unknowns
Solutions of Systems of Linear Equations in Two Unknowns
${ }^{\circledR}$ Solving Systems of Linear Equations Using Graphing Method
Solving Systems of Linear Equations Using Substitution Method
${ }^{\circledR}$ Solving Systems of Linear Equations Using Elimination Method

Student can complete the following lessons on line through the following address http://www.ohaganbooks.com/StudentSite/tutorialsf1/frames2_2A.html

Lesson One: Setting Up a System and Doing Row Operations

Hand students Exercise 2.2 Part A: Using Matrices to Solve Systems of Equations Setting Up a System and Doing Row Operations

Review Terminology
${ }^{\circledR}$ Linear Equation
(®) System
® Solve a System
${ }^{\circledR}$ Augmented Matrix Form
® Augmented Matrix

Have students complete exercises

- Setting Up Matrix
- Doing Row Operations

Lesson Two: Solving a System by Pivoting
Hand students Exercise 2.2 Part B: Using Matrices to Solve Systems of Equations Solving a System by Pivoting

Review Terminology
${ }^{\circledR}$ Row-Reduced Echelon Form
(®) General Solution
${ }^{\circledR}$ Particular Solutions
${ }^{\circledR}$ Inconsistent (system has no solution)
${ }^{\circledR}$ Consistent and Dependent (system has infinite many solutions)
${ }^{\circledR}$ Consistent and Independent (system has exactly one solution)
® Underdetermined System
® Overdetermined System
Have students complete exercises

- Solutions of Systems of Equations by Row Operations

Hand students Exercise 2.2 Part C: Using Matrices to Solve Systems of Equations Row-Reduced Echelon Form

Lesson Three: Applications of Systems of Linear Equations Using Matrices General Strategy for Solving Applied Problems involving Systems of Linear Equations 1. Identify and label the unknowns.
2. Use the information given to set up equations in the unknowns.
3. Solve the system to obtain the values for the unknowns.

Exploration and Extension:

Students will explore the use of solving systems of equation using the TI- 83 graphing calculator and other on-line resources for this topic such as:
> On-Line Pivot \& Gauss-Jordan Utility.
$>$ Excel On-Line Pivot \& Gauss-Jordan Utility
> Free Mac Software (Including Gause-Jordan Helper)
$>$ Pivot Program for the TI-82 and TI-83

Assessment/Evaluation Tool(s) and Opportunities:

Students will complete a TI-83 graphing calculator exercise Solving a System of Equations using a Matrix. Students will also complete a True/False Quiz on the topic of Systems of Equations and Matrices.

Appropriate Standards and Connections:

The Principles and Standards for School Mathematics (NCTM, 2000) prescribe that students:
$>$ Solve problems that arise in mathematics and in other contexts;
> Apply and adapt a variety of appropriate strategies to solve problems;
$>$ Relate and compare different forms of representation for a relationship;
> Model and solve contextualized problems using various representations, such as graphs, tables, and equations.
> Use mathematical models to represent and understand quantitative relationships;
> Select, apply, and translate among mathematical representations to solve problems;
> Use representations to model and interpret physical, social, and mathematical phenomenon.

Personal Comments:

Date: May 3, 2003

