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Point Pattern Analysis

* Global methods to analyze point patterns across
entire study region (or a map)

— Quantitative tools for examining a spatial
arrangement of point locations on the landscape
* Two common types of analysis
— spacing of individual points — nearest neighbor
analysis
« Ex. fire stations locations — random or dispersed
— Goal: equitable service throughout region
— Design new configuration (e.g., relocating, new stations)
— More or less dispersed than original configuration
— nature of overall point pattern — are locations
dispersed or clustered
« Ex. diseased trees in a national forest

— Widespread aerial spraying versus concentrated ground
treatment
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Center Point
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o Worktable for Calculating Central Point
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4.1
Graph of Locational Coordinates and Central Point
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Mean Center

* mean center — average location of a set
of points
— Center of gravity of point pattern (spatial
distribution) o

L Mean center (3.51.2 51)
—average X, Y values
—equal weights ~ f—a 3 -
S 2 .
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7, = mean center of |
X, X coordinate of point | x
¥, = ¥ coordinate of point | ! 2 * 4 ® s
FIGURE 4.1
= number of points in the distribution Graph of Locaianal Coordinates and Mean Cemter
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Mean Center

* Outliers.... .
—add point (15, 13) . &
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Mean Center
 geographic “center of population” — point

where a rigid map of the country would
balance if equal weights (i.e., location of
each person) were situated over it

i ‘A\':A.‘.\‘.\‘ :,'_ . ;, s - . 5
Eﬁ‘“:“’um.« ] : - ;])UI“)’

Weighted mean center

+ Unequal weights applied to points
— EXx. retail store volume, city populations,
etc.

— Weights analogous to frequencies
S
Xoe = LfT and Y, = f

where Xue = weighted mean center of X
Y,. = weighted mean center of Y
fi = frequency (weight) of point i
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Weighted mean center

TABLE 4.4

Weitied mean cealer Worktable for Calculating Weighted Mean Center
010,288 Locationsl Viesghted
) . coordinates  Woight coosgimates
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Weighted mean camter cosrdinates; (3.10, 2.68)

© Arthur J. Lembo, Jr. ‘SH]IS] )UT)"
Salisbury University




Spatial measures of
dispersion
+ standard distance — measures the

amount of absolute dispersion in a
point distribution

— spatial equivalent to standard deviation

— calculate Euclidean distance from each
point to mean center

/ S =X+ -Y)

S0 =y "
=5 SV o

e \'(",; i x‘) 3 ( Wi Y‘) .
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Standard distance
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Weighted standard distance

» Used with weighted mean center
S \."( XP) -®) + (H, ‘ T

TABLE 4.6
Y
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Worktable for Calculating Weighted Standard

Distance
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Standard Deviational Ellipse

» Extends standard distance to include
orientation of the point pattern

— Calculated separately for X and Y

» Average distance points vary from mean
center on X and average distance points vary

(X~ S(7, -
5D, =2 X X) ) sp, =2 E=F) F) @6
n n
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Standard Deviational T re—n

Ellipse: Anti-Shipping Activity off the East

Ellipse i 7 B E e
* cross of dispersion S

igonometric function — angle of rotation

Rotated about mean center to minimize distance
between both arms and points

o T = -
s oy NP
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Nearest Neighbor Analysis —
(NNA)

« Distance of each point to its nearest
neighbor is measured and mean distance
for all points is determined
— Objective: describe the pattern of points in a

study region and make inferences about the
underlvina orocess

FIGURE 14, y' ‘ © Arthur J. Lembo, Jr. ‘S(‘llS] )l'll }
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Nearest Neighbor analysis —
(NNA)

» Compare calculated value from point data to
theoretical point distributions
— Outcomes: random, clustered, dispersed
— average nearest neighbor distance is an
absolute index
« Dependent on distance measure (ex. miles, km,
meters, etc.)
« Minimum = 0 (clustered), maximum is function of
point density
— standardized nearest neighbor index (R) is
often used
« Comparison of data to random
j (14.5)
NND,

Sansuury Unversity
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Nearest Neighbor analysis — (NNA)

TABLE 14.1

Coordinates and Nearost Nelghbor Information for

NND= (17 %V Qe
£ Point x v w o

where 7 = number of points. s a4 c "
¢ ~- " o

VD ' 14.2) ‘ CI .

NND i = . = . 74 c 2
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sum as

where NND r = mean nearest neighbor distance in a —

random pattern

Density = number of points (1) Area s i
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(Perfectly

NNA - R Values dsparsed)  R=2149

(More dispersed

e Continuum... than random)
— Result?

— Descriptive test. ey el 7'

(More clustered
than random)

2.67

R==—=141
1.89
(Perfectly -
clustered) RN
@ =5 points at
same location
FIGURE 14.2 7

©SA‘R*‘I Continuum of R Values in Nearest Neighbor Analysis
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Functional
SWB

Results?

© Arthur J. Lembo, Jr. ‘SH]IS] )Ufy
Salisbury University

Nearest neighbor analysis

nn

(- ifference test can be used to determine if the
observed nearest neighbor index (NNA) differs
significantly from the theoretical norm (NNAg)

— Hy: There is no difference between our distribution
and a random distribution (Poisson)

Z,=

NND = NND ¢ (14.6)
o

o

where @ = standard error of the mean nearest neigh
bor distances

The standard error for the nearest neighbor test can be

estimated with the following formula

o 20136 .
= Jn(Density) e
where: n = number of points  Density = number of points (z)/ Area
ey nnviy

Nearest neighbor analysis (nna)
Example: Community Services in
Toronto

ergency services: fire and police
Seek dispersion to provide services equally :
nemergency services: polling sites and elementary schools bllllS] ury
)

H ” © Arthur J. Lembo, Jr.
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Nearest neighbor analysis (nna) Example:
Community Services in Toronto

Police Facilties

FIGURE 14.4
Nearest Neightor Distances for Police Service Faciities in
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Nearest neighbor analysis (nna) Example:
Community Services in Toronto
I

Nearest Neighbor Values for Selected Public Facilities in Toronts, Ontario

Pubtc Faciiny NND Densty NND, R z »

Fire 208 278 140 147 an 0000

Poice a8 o 2 128 22 as

Bumertaryichoss 05 7358 0ss 12 036 e

Vorg ocasons 0z 2451 ox om -2 o000

e Emergency
: services — more
et dispersed

" e \oting locations —

more clustered

- T 22 Elementary
J schools - random
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Nearest neighbor analysis (nna)
Example: Community Services in

Toronto

* Issues to consider...
— Study area boundaries — political boundary or research
delimited
« Doesn’t impact NNA distances but does impact area (point
density function)
— Nearest feature — may be outside study area!
+ Problem with using political boundaries
— More advanced techniques available — Ripley’s K
« Evaluates more than one nearest neighbor
« Can define distances — How many police stations within 1km?
2km?

.26136

O =
et :;ui[’rmlly')

where: n = numbe

(14.7)
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General Issues in Inferential
Spatial Statistics

» Geographers are interested in
spatial patterns produced by
physical or cultural processes

— Explain patterns of points and areas
« “global” overall arrangement /f" W

— Random vs. Nonrandom spatial processes\ /\,

« “local” concentrations or absences (

— Clusters — points or areas within larger
area

» Groups of high values — “hot spots” (
» Groups of low values — “low spots”

PED

rounE 139
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Types of Spatial Patterns
Compare existing pattern to o A s
theoretical pattern
Clustered

— Density of points varies
significantly from one part of
study area to another

« Points: retail locations near
highway interchange

« Areas: registered majority
political party affiliation

— Patterns result from nonrandorr
factors

« Accessibility, income, race,
etc. FIGURE 13.1

Types of Pant and Area Pattems

Tandar

-
@

[ ¢
J
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Types of Spatial Patterns

+ Dispersed

— Uniformly distributed
across study area

« Suggests systematic %
spatial process

* Area example:
Central Place Theory

— settlements are

uniformly distributed o
across landscape to

best serve needs of a e
dispersed rural T tivotaed vn Pt
population

Salisbury
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Types of Spatial Patterns

* Random

— No dominant trend
toward clustering or
dispersion

« Suggests spatially

random process
(Poisson) _
« Ex. lightning strikes Oisparsad
» Geographic problems

— Patterns typically appear
as some combination of
these three patterns

« Along continuum...
FIGURE 13.1

Types of Pant and Area Pattems
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Spatial Autocorrelation

« Tobler's Law — “Everything is related to everything else but
near things are more related than distant things”

* spatial autocorrelation: measures the degree to which a
geographic variable is correlated with itself through space
— Positive, negative or non-existent

« Positive spatial autocorrelation: objects near one another tend to be
similar

— Features with high values are near other features with high values, features
with medium values are near other features with medium values, etc.

« Negative spatial autocorrelation: objects near one another tend to
have sharply contrasting values
— Features with high values near features with low values
* Most geographic phenomena exhibit positive spatial
autocorrelation

— Examples: rainfall amounts, home values, etc.

© Arthur J. Lembo, Jr.
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Variogram ‘

+ Visualization of spatial
autocorrelation

» variogram: scatterplot that
display the differences in
values between geographic
locations against the mel
differences in distances i

between the geographic Geographic locations
locations ) near one another
— Y-axis: average variance
(really half the variance) in tend to have smaller
values for a set of geographic differences than
objects eographic locations
— X-axis: distance between geograp X
objects at greater distances
— Use plot to determine average (positive
difference in values at specific .
distances autocorrelation)!

+ Ex. 100 miles, 500 miles

© Arthur J. Lembo, Jr.
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Variogram

+ Displayed as best-fitting
curve (function)

— Differences in values with
distance noted and then
diminishes

« range - distance at which
the difference in values
are no longer correlated
sill — average difference in
value where there is no
relationship between
location and value
nugget — degree of
uncertainty when

Values becomes

measuring values for A n . .

geographllc locations that less similar with
t .

Shother Cooc o one distance

— Effect of sampling,
measurement error, etc.
— Unlikely that two samples

pear each other wil have Salig
the exact same value PN b
© Arthur J. Lembo, Jr. 5 (‘ 15 )l'll }
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Variogram Example: Last Spring
Frost IN SE United

* Two nearby
stations, LSF dates
should be similar
— 0 to 400 miles:
distances between
stations are large, o :
dates are different e

— Beyond 400 miles,
no longer spatially
autocorrelated...

© Arthur J. Lembo, Jr.
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Spatial Autocorrelation: Importance

in Geographic Research

* GIS - push of a button
— Calculates relationship for any distances...
« Is the test appropriate for any distance?
« Presence of spatial autocorrelation
— Inferential statistics assume independent observations
« Example: last spring frost dates are spatially correlated!
« Impact: sample locations close together, just like taking the same
sample
— Sample size impacts size of standard error
» Smaller standard error than warranted
— Standard deviation calculation impacted
» Even smaller standard error
* Global or local measurement
— global — examine a distribution of subset (ex. ethnic group)
across entire area (ex. city)
+ One group more clustered, dispersed or random than another
— local — compares each geographic object (ex. all group
members) with its surrounding neighbors
+ Is area (ex. neighborhood) more clustered, dispersed or random

than another? Salist oury
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Spatial Autocorrelation: Neighbor Definitions

* Measure of interaction between geographic
features
— Defining neighbor...

« adjacency — share common border

— Binary: yes or no
» Ex. New York and Pennsylvania, New York and California

« distance threshold — cut-off distance

— Salisbury, MD — neighbor definition 60 miles...Easton, Wilmington,
DE?

« inverse-distance — strength of “neighborliness” between two
objects as a function of distance separating them
(1/distance)

» New York City and Boston: 1/189 miles or .005,
» NYC and LA: 1/2588 miles or .0004

» Interaction measure (“neighborliness”) is 12 times
stronger between NYC and Boston versus NYC and LA

— In equations/modeling, takes the form of weights
* w;: weight between geographic object i and j
— Binary: O or 1

— Inverse-distance: continuous value ... AllS! N
© Arthur J. Lembo, Jr. ‘S“IISI)UI }
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Spatial Autocorrelation

« First law of geography: “everything is related
to everything else, but near things are more
related than distant things” — Waldo Tobler

* Many geographers would say “I don’t
understand spatial autocorrelation” Actually,
they don’t understand the mechanics, they
do understand the concept.

© Arthur J. Lembo, Jr. ‘SH]IS] )Ul‘y
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Spatial Autocorrelation

+ Spatial Autocorrelation — correlation of a
variable with itself through space.

— If there is any systematic pattern in the spatial
distribution of a variable, it is said to be spatially
autocorrelated

— If nearby or neighboring areas are more alike,
this is positive spatial autocorrelation

— Negative autocorrelation describes patterns in
which neighboring areas are unlike

— Random patterns exhibit no spatial
autocorrelation

© Arthur J. Lembo, Jr.
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Why spatial autocorrelation
IS important

» Most statistics are based on the assumption
that the values of observations in each
sample are independent of one another

+ Positive spatial autocorrelation may violate
this, if the samples were taken from nearby
areas

+ Goals of spatial autocorrelation
— Measure the strength of spatial autocorrelation in
a map

— test the assumption of independence or
randomness

© Arthur J. Lembo, Jr.
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Spatial Autocorrelation

+ Spatial Autocorrelation is, conceptually
as well as empirically, the two-
dimensional equivalent of redundancy

* |t measures the extent to which the
occurrence of an event in an areal unit
constrains, or makes more probable,
the occurrence of an eventin a
neighboring areal unit.

© Arthur J. Lembo, Jr.
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Spatial Autocorrelation

» Non-spatial independence suggests many statistical
tools and inferences are inappropriate.

— Correlation coefficients or ordinary least squares regressions
(OLS) to predict a consequence assumes that the observations
have been selected randomly.

If the observations, however, are spatially clustered in some
way, the estimates obtained from the correlation coefficient or
OLS estimator will be biased and overly precise.

They are biased because the areas with higher concentration of
events will have a greater impact on the model estimate and
they will overestimate precision because, since events tend to be
concentrated, there are actually fewer number of independent
observations than are being assumed.

Salisbury

© Arthur J. Lembo, Jr. /
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Indices of Spatial Autocorrelation

* Moran’s |
* Geary's C
* Ripley’s K

Salishury

© Arthur J. Lembo, Jr.
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Moran’s | Index (Global)

» Popular technique for quantifying level of
spatial autocorrelation in a set of geographic
areas

* Moran’s | Index takes into account
geographic locations (points or areas) as
well as attribute values (ordinal or
interval/ratio) to determine if areas are
clustered, randomly located or dispersed
— Positive : clustered — nearby locations have
similar attribute values

— Negative: dispersed — nearby locations have
dissimilar attribute values

— Near zero: attribute values are randomly
dispersed thr%lﬂghout thudy area Salisbury

ur J. Lembo,
Salisbury University

Moran’s | Index (Global)

The general form of Moran's Index for areas is shown Weighted Cms_s'pmdu‘:t_S: deVia_tio_n
in equation 15.4, and the mathematical equivalent, as pre- values for contiguous pairs multiplied
sented in Ebdon (1988), appears in equation 15.5: together and summed

number sum of cross-products
of areas |, for all contiguous pairs (i, /)

1= (15.4) «Positive: neighboring areas with
number variance of the L. . .
of joins | area attribute values similar attribute values either large or
. . small (clustered)
nY(x, -%)(x,-%) L
T (15.5) «Larger deviation from mean,
- greater magnitude
n = the number of areas
*'= an aren sttribute value *Negative: neighboring areas with
¥ = the mean of all area attribute L " -
ke dissimilar attribute values contiguous
xand x, = the values of contiguous pairs (dispersed)
«Larger deviation from mean,
(%, =F)x,~F) = the sum of all contignous pairs B
o s et ool greater magnitude
Y(x-%)" = the variance of the attribute *Near zero: random...

valucs.

Salisbury University
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Moran’s | Index (Global):
Significance test

The null hypothesis is that the arca valves ar
aranged in a completely random spatial pattern, and
that spatial autocorrelation is not present within the
study area. The Z score is computed s

_E
Z= f7‘_ (15.6)
where: £, =
e
Similar to the free and non-free sampling techniques
mentioned with join count analysis and binary data, the
variance for Moran's [ may be caleulated under the
assumption of normality or randomization. Normulity &
similar to free sampling in that the observed values of a
variable are taken randomly from a normally distributed
population, whereas rndomization is similar to non-free
sampling in that the values are taken directly from the
data set. The variance under the normulity assumption i
computed as

O L Vo ¥ 5
bt T7(a" 1)
where:  # = the number of objects

7 = the number of joins, and

XL = the sum of the number of joins for cach
individual area

H,: No spatial autocorrelation in the data
(Values of areas are completely random)
H,: Spatial autocorrelation in the data
(Values of areas are not completely
random)

* If p-value is not significant, then

you should not reject the null
hypothesis
*The observed pattern is not
different from complete spatial

randomness
» p-value significant and Z-score
'_;.:-c—em“/»A ~ avastam b - iitiVe
stering

At ARy

mescats B K fox e varnibe =

Worktabe for Moran's /1 Five-aren Example Pattem

K. 10 spane autocoreianon o e dsts

[R—

Result?

ruRe 153

©Arthy 7% ———
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Example: Cleveland Census

Block Groups

Salisbury

Salisbury University
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Lf.j

Per Capita Income
4200 - 25396

W 25307 - 36722

I o723 - ses22

I ez 12010

Moran's Index: 0.507710 =
£l W O

Diversity Index
00-174
[0 175308

B s09-444

Moran's Index: 0.578244
z-score. 25422053
p-value: 0.000000

Moran’s | Index (Global)

Moran's Index

Primary Objective:  Identify sigrificant spatial patterns within
a study area
Requirements and Assumptions:

1. Minimum of (30) geographic features
2. Aftribute values measured on an ordinal or
intervalratio scale

Hypotheses:
Hq t Attriouts values ara randomly distributod across
features in the study area
Ha ¢ Attrioute values are not randomly distributed across
features in the study area

Test Statistic:
[ = nEGi- Dy =)
DY EREE
Interpretation:

Assuming a significant p-value:
1< 0 (observed pattern is dispersed) S I }
1«0 (observed pattern s random) 118 7
1> 0 (observed pattem is clustered) alls Jur}
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Moran’s | Index (local)

* Global spatial autocorrelation (Moran’s I)
may indicate a lack of spatial
autocorrelation

— Local pockets may exist— hotspots

— LISA — Local Indicators of Spatial Association
< Quantify similarity of each geographic observation
with an identified group of geographic neighbors

— Identifies local clusters — geographic locations where
adjacent or nearby areas have similar values

— Spatial outliers — geographic locations that are different
from adjacent or nearby areas

« Each geographic area receives individual measure

© Arthur J. Lembo, Jr. kSlelS] )l'lr)v
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Moran’s | Index (local): Example:
Obesity in PA

(«,-%)
3,

= 3 wi(s,=X)

(15.7)
siay & -5 ’

3 -X
" a1
where: x;, = the value for a particular geographic entity
5, = the value for the ncighboring geographic
entity
X = the average of all auributes
wyy = the spatial weights

‘The overall computation of the local Moran index is
beyond the scope of this book, but a short example will
help illustrate its usefulness.

+  Global Moran’s | = .69, p-value = .25
* Local Moran’s | for each county...

Positive values: similar levels in adjacent counties
(clustering)

. « Philly...
« Johnstown/Altoona
. i Negative values: dissimilar values,—oytlier

—— wr J. Lembo, Jr. + Fayette Counpl IST)LU )
oV bury University

Example of Moran’s I —
Per Capita Income in
Monroe County

Using Polygons:

Morans I: .66
P:<.001

Using Points:
I:.12
Z: 65

© Artiur v. Loy, vi.
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Example of Moran’s I —
Random Variable

Using Polygons:

Moran’s I: .012
p:.515

Using Points:

Moran’s I: .0091
Z:1.36

© Arthur J. Lembo, Jr.
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