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• Global methods to analyze point patterns across 
entire study region (or a map)
– Quantitative tools for examining a spatial 

arrangement of point locations  on the landscape

• Two common types of analysis
– spacing of individual points – nearest neighbor 

analysis
• Ex. fire stations locations – random or dispersed

– Goal: equitable service throughout region

– Design new configuration (e.g., relocating, new stations)

– More or less dispersed than original configuration

– nature of overall point pattern – are locations 
dispersed or clustered

• Ex. diseased trees in a national forest
– Widespread aerial spraying versus concentrated ground 

treatment

Point Pattern Analysis
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Center Point

Euclidean (straight-line) distance

• Total distance from all other points is lowest
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Center Point
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• mean center – average location of a set 

of points

– Center of gravity of point pattern (spatial 

distribution)

– average X, Y values

– equal weights

Mean Center
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• Outliers….

– add point (15, 13)

– Average location 

but…

Mean Center
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• geographic “center of population” – point 

where a rigid map of the country would 

balance if equal weights (i.e., location of 

each person) were situated over it

Mean Center
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• Unequal weights applied to points

– Ex. retail store volume, city populations, 

etc.

– Weights analogous to frequencies

Weighted mean center
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Weighted mean center 
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• standard distance – measures the 

amount of absolute dispersion in a 

point distribution

– spatial equivalent to standard deviation

– calculate Euclidean distance from each 

point to mean center 

Spatial measures of 

dispersion
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Standard distance

Relative Measure….
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• Used with weighted mean center

– Difference

• 1.54 vs. 1.70

Weighted standard distance
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• Extends standard distance to include 

orientation of the point pattern

– Calculated separately for X and Y 

• Average distance points vary from mean 

center on X and average distance points vary 

from mean center on Y axis

Standard Deviational Ellipse
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• cross of dispersion

• trigonometric function – angle of rotation

– Rotated about mean center to minimize distance 

between  both arms and points

Standard Deviational 

Ellipse
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• Distance of each point to its nearest 
neighbor is measured and mean distance 
for all points is determined

– Objective: describe the pattern of points in a 
study region and make inferences about the 
underlying process

Nearest Neighbor Analysis –

(NNA)
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• Compare calculated value from point data to 
theoretical point distributions
– Outcomes: random, clustered, dispersed

– average nearest neighbor distance is an 
absolute index

• Dependent on distance measure (ex. miles, km, 
meters, etc.)

• Minimum = 0 (clustered), maximum is function of 
point density

– standardized nearest neighbor index (R) is 
often used

• Comparison of data to random

Nearest Neighbor analysis –

(NNA)
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Nearest Neighbor analysis – (NNA)
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• Continuum…

– Result?

– Descriptive test…

NNA – R values
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Functional 

SWB

Results?
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• A difference test can be used to determine if the 

observed nearest neighbor index (NNA) differs 

significantly from the theoretical norm (NNAR) 

– H0: There is no difference between our distribution 

and a random distribution (Poisson)

Nearest neighbor analysis 

(nna)
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• Emergency services: fire and police
– Seek dispersion to provide services equally

• Nonemergency services: polling sites and elementary schools
– Seek clustering…why?

Nearest neighbor analysis (nna) 

Example: Community Services in 

Toronto
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• Result?

Nearest neighbor analysis (nna) Example: 

Community Services in Toronto
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Nearest neighbor analysis (nna) Example: 

Community Services in Toronto

Emergency 

services – more 

dispersed

Voting locations –

more clustered

Elementary 

schools - random
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Nearest neighbor analysis (nna) 

Example: Community Services in 

Toronto
• Issues to consider…

– Study area boundaries – political boundary or research 

delimited

• Doesn’t impact NNA distances but does impact area (point 

density function)

– Nearest feature – may be outside study area!

• Problem with using political boundaries

– More advanced techniques available – Ripley’s K

• Evaluates more than one nearest neighbor

• Can define distances – How many police stations within 1km? 

2km?
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• Geographers are interested in 

spatial patterns produced by 

physical or cultural processes

– Explain patterns of points and areas

• “global” overall arrangement

– Random vs. Nonrandom spatial processes

• “local” concentrations or absences

– Clusters – points or areas within larger 

area

» Groups of high values – “hot spots”

» Groups of low values – “low spots”

General Issues in Inferential 

Spatial Statistics
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• Compare existing pattern to 

theoretical pattern 

• Clustered

– Density of points varies 

significantly from one part of 

study area to another

• Points: retail locations near 

highway interchange

• Areas: registered majority 

political party affiliation

– Patterns result from nonrandom 

factors

• Accessibility, income, race, 

etc.

Types of Spatial Patterns
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• Dispersed

– Uniformly distributed 
across study area

• Suggests systematic 
spatial process

• Area example: 
Central Place Theory 
– settlements  are 
uniformly distributed 
across landscape to 
best serve needs of a 
dispersed rural 
population

Types of Spatial Patterns
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• Random

– No dominant trend 

toward clustering or 

dispersion

• Suggests spatially 

random process 

(Poisson)

• Ex. lightning strikes

• Geographic problems

– Patterns typically appear 

as some combination of 

these three patterns

• Along continuum…

Types of Spatial Patterns
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• Tobler’s Law – “Everything is related to everything else but 
near things are more related than distant things”

• spatial autocorrelation: measures the degree to which a 
geographic variable is correlated with itself through space
– Positive, negative or non-existent

• Positive spatial autocorrelation: objects near one another tend to be 
similar

– Features with high values are near other features with high values, features 
with medium values are near other features with medium values, etc. 

• Negative spatial autocorrelation: objects near one another tend to 
have sharply contrasting values

– Features with high values near features with low values

• Most geographic phenomena exhibit positive spatial 
autocorrelation
– Examples: rainfall amounts, home values, etc.

Spatial Autocorrelation

© Arthur J. Lembo, Jr.

Salisbury University

• Visualization of spatial 
autocorrelation

• variogram: scatterplot that 
display the differences in 
values between geographic 
locations against the 
differences in distances 
between the geographic 
locations
– Y-axis: average variance

(really half the variance) in 
values for a set of geographic 
objects

– X-axis: distance between 
objects

– Use plot to determine average 
difference in values at specific 
distances

• Ex. 100 miles, 500 miles

Variogram

Geographic locations 

near one another 

tend to have smaller 

differences than 

geographic locations 

at greater distances 

(positive 

autocorrelation)!
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• Displayed as best-fitting 
curve (function)
– Differences in values with 

distance noted and then 
diminishes

• range - distance at which 
the difference in values 
are no longer correlated

• sill – average difference in 
value where there is no 
relationship between 
location and value

• nugget – degree of 
uncertainty when 
measuring values for 
geographic locations that 
are very close to one 
another

– Effect of sampling, 
measurement error, etc.

– Unlikely that two samples 
near each other will have 
the exact same value

Variogram

No 

relationship

Values becomes 

less similar with 

distance
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• Two nearby 

stations, LSF dates 

should be similar 

– 0 to 400 miles: 

distances between 

stations are large, 

dates are different

– Beyond 400 miles, 

no longer spatially 

autocorrelated…

Variogram Example: Last Spring 

Frost IN SE United states
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• GIS – push of a button
– Calculates relationship for any distances…

• Is the test appropriate for any distance?

• Presence of spatial autocorrelation
– Inferential statistics assume independent observations

• Example: last spring frost dates are spatially correlated!

• Impact: sample locations close together, just like taking the same 
sample

– Sample size impacts size of standard error

» Smaller standard error than warranted

– Standard deviation calculation impacted

» Even smaller standard error 

• Global or local measurement
– global – examine a distribution of subset (ex. ethnic group) 

across entire area (ex. city)
• One group more clustered, dispersed or random than another

– local – compares each geographic object (ex. all group 
members) with its surrounding neighbors

• Is area (ex. neighborhood) more clustered, dispersed or random 
than another?

Spatial Autocorrelation: Importance 

in Geographic Research
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• Measure of interaction between geographic 
features
– Defining neighbor…

• adjacency – share common border
– Binary: yes or no

» Ex. New York and Pennsylvania, New York and California

• distance threshold – cut-off distance
– Salisbury, MD – neighbor definition 60 miles…Easton, Wilmington, 

DE?

• inverse-distance – strength of “neighborliness” between two 
objects as a function of distance separating them 
(1/distance) 

» New York City and Boston: 1/189 miles or .005, 

» NYC and LA: 1/2588 miles or .0004

» Interaction measure (“neighborliness”) is 12 times 
stronger between NYC and Boston versus NYC and LA

– In equations/modeling, takes the form of weights
• wij : weight between geographic object i and j

– Binary: 0 or 1

– Inverse-distance: continuous value …

Spatial Autocorrelation: Neighbor Definitions
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Spatial Autocorrelation

• First law of geography:  “everything is related 

to everything else, but near things are more 

related than distant things” – Waldo Tobler

• Many geographers would say “I don’t 

understand spatial autocorrelation”  Actually, 

they don’t understand the mechanics, they 

do understand the concept.
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Spatial Autocorrelation

• Spatial Autocorrelation – correlation of a 
variable with itself through space.
– If there is any systematic pattern in the spatial 

distribution of a variable, it is said to be spatially 
autocorrelated

– If  nearby or neighboring areas are more alike, 
this is positive spatial autocorrelation

– Negative autocorrelation describes patterns in 
which neighboring areas are unlike

– Random patterns exhibit no spatial 
autocorrelation



13

© Arthur J. Lembo, Jr.

Salisbury University

Why spatial autocorrelation 

is important
• Most statistics are based on the assumption 

that the values of observations in each 
sample are independent of one another

• Positive spatial autocorrelation may violate 
this, if the samples were taken from nearby 
areas

• Goals of spatial autocorrelation
– Measure the strength of spatial autocorrelation in 

a map 

– test the assumption of independence or 
randomness
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Spatial Autocorrelation

• Spatial Autocorrelation is, conceptually 
as well as empirically, the two-
dimensional equivalent of redundancy

• It measures the extent to which the 
occurrence of an event in an areal unit 
constrains, or makes more probable, 
the occurrence of an event in a 
neighboring areal unit.
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Spatial Autocorrelation
• Non-spatial independence suggests many statistical 

tools and inferences are inappropriate.
– Correlation coefficients or ordinary least squares regressions 

(OLS) to predict a consequence assumes that the observations 
have been selected randomly.

– If the observations, however, are spatially clustered in some 
way, the estimates obtained from the correlation coefficient or 
OLS estimator will be biased and overly precise.

– They are biased because the areas with higher concentration of 
events will have a greater impact on the model estimate and 
they will overestimate precision because, since events tend to be 
concentrated, there are actually fewer number of independent 
observations than are being assumed.
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Indices of Spatial Autocorrelation

• Moran’s I

• Geary’s C

• Ripley’s K

© Arthur J. Lembo, Jr.

Salisbury University

• Popular technique for quantifying level of 
spatial autocorrelation in a set of geographic 
areas

• Moran’s I Index takes into account 
geographic locations (points or areas) as 
well as attribute values (ordinal or 
interval/ratio) to determine if areas are 
clustered, randomly located or dispersed
– Positive : clustered – nearby locations have 

similar attribute values

– Negative: dispersed – nearby locations have 
dissimilar attribute values

– Near zero: attribute values are randomly 
dispersed throughout study area

Moran’s I Index (Global)
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Moran’s I Index (Global)
Weighted cross-products: deviation 

values for contiguous pairs multiplied 

together and summed 

•Positive: neighboring areas with 

similar attribute values either large or 

small (clustered)

•Larger deviation from mean, 

greater magnitude

•Negative: neighboring areas with 

dissimilar attribute values contiguous 

(dispersed)

•Larger deviation from mean, 

greater magnitude

•Near zero: random…

•I ranges from -1.00 to 1.00
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Moran’s I Index (Global): 

Significance test 
H0: No spatial autocorrelation in the data 

(Values of areas are completely random)

HA: Spatial autocorrelation in the data 

(Values of areas are not completely 

random)

• If p-value is not significant, then 

you should not reject the null 

hypothesis

•The observed pattern is not 

different from complete spatial 

randomness

• p-value significant and Z-score

positive

•clustering

• p-value significant and Z-score

negative

•dispersed
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Result?
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Example: Cleveland Census 

Block Groups
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Moran’s I Index (Global)
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• Global spatial autocorrelation (Moran’s I) 

may indicate a lack of spatial 

autocorrelation

– Local pockets may exist– hotspots

– LISA – Local Indicators of Spatial Association

• Quantify similarity of each geographic observation 

with an identified group of geographic neighbors

– Identifies local clusters – geographic locations where 

adjacent or nearby areas have similar values

– Spatial outliers – geographic locations that are different 

from adjacent or nearby areas

• Each geographic area receives individual measure

Moran’s I Index (local)
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• Global Moran’s I = .69, p-value = .25

• Local Moran’s I for each county…

Positive values: similar levels in adjacent counties 

(clustering)

• Philly…

• Johnstown/Altoona

Negative values: dissimilar values – outlier

• Fayette County

Moran’s I Index (local): Example: 

Obesity in PA
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Example of Moran’s I –

Per Capita Income in 

Monroe County

Using Polygons:

Morans I:  .66

P: < .001

Using Points:

I: .12

Z: 65
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Example of Moran’s I –

Random Variable

Using Polygons:

Moran’s I: .012

p: .515

Using Points:  

Moran’s I: .0091

Z: 1.36


