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By Partha Chakroborty

Optimal Routing and Scheduling in Transportation: Using
  Genetic Algorithm to Solve Difficult Optimization Problems

1. Introduction
Whenever an organization, in the business of 
providing mobility, is entrusted with moving 
goods and people a natural question that arises is 
how efficiently can that organization  provide 
the services. This basic requirement of efficient 
mobility of goods and passengers gives rise to, 
among many other things, the subject areas of 
optimal routing and scheduling. In the following 
sections the problems of optimal routing and 
optimal scheduling are explained. Finally, how 
these optimization problems, which are often 
difficult to solve using traditional optimization 
tools, have been solved using genetic algorithms 
are explained. 

2. The Optimal Routing Problem
The problem here is to find a path which achieves 
some pre-defined purpose and is desirable (i.e., it 
is optimal or good in some way). There are two 
major classes of routing problems, namely the 
vehicle routing problem, and the transit (or bus) 
routing problem. Figure 1, for example, shows a 
part of the Vishakapatnam road network with the 
bus route system superimposed (in purple); the  
job of optimal transit routing would be to 
determine such a bus system which is optimal 
from various different standpoints (described 
later). 
The sheer number of different possible routes  
and various different constraints representing 

"The problem of designing a good or efficient route set (or route network) for a transit system is a difficult optimization 
problem which does not lend itself readily to mathematical programming formulations and solutions using traditional 
techniques".Given the importance of devising faster methods to obtain optimal/near-optimal solutions to the routing and 
scheduling problems a lot of work has been going on to develop such techniques using new tools like Tabu search, 
Simulated annealing, Ant Systems, and  Genetic Algorithms.

 
Figure 1:  Vishakapatnam road network with the bus routes. 
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feasible; yet it is clear that the route shown in (b) 
part of the figure is desirable (when compared to 
(a)) as the length of the route connecting all the 
five offices is less than the length of the route 
shown in (a). The purpose of TSP algorithms is to 
find that route which offers the least length (or at 
least find a route which from a practical stand 
point is as good as the minimum length route). 
The TSP is a difficult optimization problem as the 
number of feasible routes (from which the best is 
to be found) increases at a very fast rate with the 
increase in the number of nodes. Nonetheless, 
some exact algorithms exist (see Padberg and 
Rinaldi [35]) which solve the TSP using 
polyhedral cutting plane procedures. However, 
the computation effort is extremely large and the 
process complexity (i.e., the complexity of the 
algorithms and their implementation) is 
prohibitively large. Similar observations are made 
by, among others, Chatterjee et al. [16] and 
Hasegawa et al. [24]. It is not surprising, 
therefore, that even with the existence of exact 
algorithms, ever more efficient heuristics 
continue to be developed and reported (among 
the recent ones are Hasegawa [24], Ugajin [45], 
del Castillo [18], etc.). Most of the recent 
heuristic algorithms are based on what Fisher 
[21] calls artificial intelligence techniques, like 
Tabu search, Simulated Annealing, Neural 
Networks, and Genetic Algorithms. 
The single vehicle pick-up and delivery problem 
(SVPDP)
This problem is similar to a TSP except that, each 
node is either a pick-up node or a delivery node; 
further, there is a one-to-one, one-to-many, 
many-to-one, or many-to-many relation between 

several resource limitations make the 
development of such a bus system difficult.
2.1. The vehicle routing problem
The vehicle routing problem refers to all 
problems where optimal closed loop paths which 
touch different points of interest are to be 
determined. There may be one or more vehicles. 
Generally the points of interest are referred to as 
nodes; further, the start and end nodes of a route 
are the same and often referred to as the depot. 
Broadly, there are six sub-classes of the vehicle 
routing problem; these vary from one another 
depending on the node and vehicle properties. 
Historically, many of these problems have 
specific names which have been used here. 
These problems are described briefly in the 
following text. 
The traveling salesman problem (TSP)
In this case a single vehicle has to visit a set of 
nodes exactly once before returning to its 
starting position. Such problems implicitly 
assume that the sum total of demand for 
services at the nodes is less than the capacity of 
the vehicle, or alternatively the capacity of the 
vehicle is not material to the problem. In this case 
optimality of a route is measured in terms of 
minimum route length. Practical examples of the 
TSP include planning the route for a courier who 
typically has to visit certain homes / houses in an 
area; other examples include that of developing a 
repairman's route, or that of a doctor making 
house calls. More importantly the TSP often 
forms a sub-problem of other vehicle routing 
problems. As an example of the TSP, Figure 2 
shows two possible routes of a courier serving 
five offices. Both the routes are viable or 

 

Figure 2:  The TSP; (a) a feasible path through 5 nodes, 

 (b) a better and feasible path through the same 5 nodes. 



problems and Psaraftis' [36] dynamic 
programming procedure for SVPDPTW) their 
applicability is limited owing to their complexity. 
Hence, heuristic solution techniques continue to 
be developed. Among the recent ones are Moon 
et al. [32], Renaud et al. [39,38], and Gendreau 
et al. [22] for the pick-up and delivery problem 
and Calvo [6], and Nanry and Barnes [33] for the 
pick-up and delivery problem with time windows. 
Multiple vehicle routing problems
It is conceivable that in each of the above cases, 
the total of the services (or goods) demanded by 
all the nodes is greater than the capacity of one 
vehicle. In this case, more than one vehicle needs 
to be used. Although the criterion for 
optimization can remain the same as in the 
corresponding single vehicle case the multiple 
vehicle problems is in essence different from the 
single vehicle case. The difference arises 
because, as opposed to the single vehicle case, 
here, one is not sure which nodes need to be 
served by a given vehicle. That is, a priori, one 
does not know which nodes a route should 
touch; all that is known is that all the routes put 
together should serve all the nodes in the 
problem. Typically, in these problems, it is 
assumed that complete service at a node must be 
provided by one vehicle; part service of a node is 
not allowed.
Quite a lot of work has been done on multiple 
vehicle routing problems; these are not 
discussed here. However, the interested reader 
may refer to Fisher [21], Desrosiers et al. [19], 
Laporte at al. [28], Toth and Vigo [43], or Tan et 
al. [42] for descriptions of the various concepts 
and models used in solving the different kinds of 
multiple vehicle routing problems. 
2.2. The transit routing problem
The transit routing problem is quite distinct from 
the vehicle routing problems. In transit routing, a 
route is to be determined on which transit units 
(say buses) will run as per some pre-defined (and 
possibly announced) schedule. Figure 3 shows in 
part (a) a typical urban area with a road network 
and the underlying land-use pattern; part (b) of 
the figure shows a possible bus route set for the 
area. The purpose of transit routing is to 
determine a good set of routes.
Transit routing is different from the vehicle 
routing problems described earlier because (i) the 
vehicle being routed, in this case a bus, does not 

the pick-up node set and the delivery node set. 
Obviously, a sequence of nodes where a delivery 
node appears before its corresponding pick-up 
node is not a valid route. As in the TSP, each 
node can have different service requirements. 
Such problems arise in situations where intra-
city courier service personnel must pick-up and 
deliver mail among various offices in a city, or in 
situations where a garbage truck must leave 
from depot collect garbage, deposit it at a dump 
and then return to the depot, etc. Route length is 
an important optimality criterion in such 
problems; however, the riding time of goods (or 
people) between the pick-up point and the 
delivery point can in some cases be the 
optimality consideration. This problem is 
sometimes referred to as a traveling salesman 
problem with precedence constraints because 
there are constraints on how nodes can be 
ordered (a pick-up node must be before the 
corresponding delivery node). 
Single vehicle pick-up and delivery problem with 
time windows (SVPDPTW)
This problem is same as the SVPDP except that 
there is a time-window associated with each 
node. The vehicle serving a particular node must 
visit that node within the stipulated time-
window. In this problem, therefore, a sequence 
of nodes cannot be considered as a valid route if 
(i) a delivery node is visited before its 
corresponding pick-up node, and (ii) a node is not 
visited within the specified time window. A good 
example of this problem is the dial-a-ride para-
transit system where individuals ask the service 
provider to pick them up from a certain point 
within a certain time and drop them off at 
another point within a certain time window. The 
total route length is an important optimality 
criterion in these problems. Riding time is not as 
important since satisfaction of time windows 
imply, to a certain extent, the satisfaction of 
users from the riding time perspective. 
Much less work (as compared to TSP) has been 
reported in the last two types of vehicle routing 
problem, namely the pick-up and delivery 
problem, and the pick-up and delivery with time 
window problem. Savelsbergh and Sol [41] and 
Renaud et al. [38] make similar observations. As 
earlier, even though there are some exact 
methods (like Kalantari et al.'s [26] branch-
bound procedure for pick-up and delivery 
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have to visit the actual points of demand (i.e., the 
points where the demand arises), rather the 
points of demand re-adjust themselves (by 
gathering at a bus stop) to avail of the services; 
(ii) the demand need not be satisfied using one 
route, one can transfer (from one route to 
another) in order to reach ones final destination; 
and (iii) it is not necessary that all demand for 
travel be met. Given these differences, the 
criteria which define a good route, or more 
correctly, a good set of routes are different from 
the vehicle routing problems. In this case, a good 
set of routes should have the following 
properties: 
(i) The route set should satisfy most, if not 
all, of the existing transit demand (i.e., the 
requirements of the people to travel); 
(ii) The route set should satisfy most of the 
demand without requiring passengers to transfer 
from one route to another; 
(iii) The route set should offer low travel time 
(including the time spent by passengers in 
transferring) to its passengers.  

The problem of designing a good or efficient 
route set (or route network) for a transit system 
is a difficult optimization problem which does not 
lend itself readily to mathematical programming 
formulations and solutions using traditional 
techniques. Newell [34] observes that designing 
an efficient route network “... is generally a non-
convex (even concave) optimization problem for 
which no simple procedure exists short of direct 
comparisons of the various local minima.” 
Similar observations are also made by Baaj and 
Mahmassani [1]. 
These reasons, perhaps, have limited the 
solution of this problem to either using heuristic 
algorithms or analytical techniques which 
optimize only parameters like route spacing, 
route length, etc. for simplistic, idealized 
networks. The analytical techniques (example, 
Holroyd [25], Byrne and Vuchic [4], and Byrne 
[5] ), as also observed by Ceder and Wilson [7] 
and van Nes et al. [46], cannot be used for 
designing of actual routes on any given road 
network. As mentioned earlier, most of the other 

Figure 3: The transit routing problem; (a) an urban area with land use and 

 roads, (b) a possible bus route network for the urban area. 



studies in the area of route design like Lampkins 
and Saalmans [29], Rosello [40], Mandl [30,31], 
Dubois et al. [20], Ceder and Wilson [7], and 
Baaj and Mahmassani [1,2] basically propose 
heuristic algorithms at various levels of 
sophistication. Recently, Kidwai [27] has made 
an attempt to use an optimization tool for solving 
the problem.
In this section on routing problems various types 
of problems have been presented. These 
problems vary widely in terms of their purpose, 
the characteristics of the nodes, and the 
vehicles. However, three things remain 
common: (i) in all cases the geometry of a path is 
sought, (ii) the geometry should be optimal or 
near optimal from some perspective, and (iii) all 
of them are discrete, difficult (NP hard), 
combinatorial optimization problems. Problems 
which possess the latter characteristic are 
notoriously difficult to solve using traditional 
optimization techniques. Later, a series of 
algorithms developed at IIT Kanpur to solve 
various routing problems will be briefly 
described. 
3. The Optimal Scheduling Problem
Another optimization problem related to the 
transit system design is the scheduling of transit 
units (say buses). The problem here is that given 
a set of routes, one needs to develop schedules 
for bus arrivals and departures at all the stops of 
the network. A good or efficient schedule is one 
which minimizes the waiting time of passengers 
while operating within a set of resource and 
service related constraints. The total waiting 
time of passengers have two components: (i) the 
total initial waiting time (IWT) of passengers,  
this is the sum of the waiting times of all the 
passengers at their point of origin, and (ii) the 
total transfer time (TT),  this is the sum of the 
transfer times of all the transferring passengers. 
The resource and service related constraints are: 

1.     Limited fleet size:  only a fixed number of 
buses are available for operating on the different 
routes. 
2. Limited bus capacity:  each bus has a 
finite capacity. 
3. Stopping time bounds:  buses cannot 
stop for a very little or a very long time at a stop. 
4. Policy headway:  on a given route a 

minimum frequency level needs to be 
maintained. 
5. Maximum transfer time:  no passenger 
should have to wait too long for a transfer. 

Some of the features related to the transit 
scheduling problem which any methodology 
designed to solve the problem must be capable 
of handling are: 
1.    Arrival time of a bus at one stop is 
dependent on the arrival time of the bus at the 
previous stop. 
2.      Arrival times of buses at a stop are 
generally not exactly as per the schedule. Arrival 
times are generally randomly distributed around 
the scheduled arrival times. Since arrival times 
are not exactly as per schedule, departure times 
are also not exactly as per schedule. 
3.        If demand for a route is very high during 
a particular period, then the queue developed for 
that route at the stop may not be cleared entirely 
by the next bus of the route due to limited bus 
capacity. In such cases, the formation and the 
dissipation of the queue must be tracked so that 
realistic values for the waiting times and transfer 
times can be obtained. 
4.      The arrival patterns in passengers at stops 
may vary widely; stops which primarily have 
commuters may see a surge in passenger 
arrivals just before the arrival time of a bus (since 
schedule is known); whereas stops which have a 
large percentage of irregular passengers may 
see a reasonably uniform arrival rate.
Unlike in the transit routing problem, the 
scheduling problem can be formulated as a 
mathematical programming (MP) problem. One 
may refer to Chakroborty [13] or Chakroborty et 
al. [9] for variants to the mathematical 
formulation. The MP formulation arising in this 
case is a mixed integer (i.e., some decision 
variables are integer while others are real) non-
linear programming problem (MINLP);  non-
linearity exists both in the objective function and 
constraints. It must be mentioned here, that MP 
formulations make two important simplifying 
assumptions of unlimited bus capacity, and 
strict schedule adherence (or deterministic 
arrival times).
Given the combinatorial nature of the problem, 
the number of variables (especially the integer 
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ones) and the number of constraints increase at a 
fast rate with the increase in the number of 
routes and fleet size. Further, given the restricted 
ability of traditional optimization methods to 
handle MINLP problems, it is seen that even 
extremely small problems (for example, three 
routes and ten buses in each route) cannot be 
solved within a reasonable time frame using 
traditional methods. As in the case of transit 
routing, most of the earlier work on transit 
scheduling with transfer considerations (for 
example, see Bookbinder and Désilets [3] and 
Rapp and Gehner [37]) rely on heuristics and user 
intervention at various stages of the solution 
process.
Before leaving the sections on routing and 
scheduling problems few points are worth 
highlighting: 
1.       The size of the optimization problem in all 
the types of routing and scheduling problem 
increases much more quickly than the rate at 
which the size of the actual problem increases. 
For example, if there are three nodes, there is just 
one feasible TSP route; now try finding how 
many feasible routes are there if there are 15 
nodes. 
The impact of this property is that even if exact 
solution techniques exist many of them are 
rendered useless in practical situations because 
of the excessive time requirements. 
2.       All problems deal with discrete quantities; 
dealing with such quantities using traditional 
techniques is difficult. 
3.       From practical standpoints the optimal is 
not necessarily one which has to be obtained; 
solutions which are good (i.e., close to the 
optimal) are equally important provided these 
can be obtained quickly. Not surprisingly 
therefore, heuristic techniques (which typically 
guarantee near-optimal solutions) continue to 
play an important role as viable solution 
techniques for these problems. 
4. GA and Routing and Scheduling Problems
Given the importance of devising faster methods 
to obtain optimal / near-optimal solutions to the 
routing and scheduling problems a lot of work 
has been going on to develop such techniques 
using new tools like Tabu Search, Simulated 
Annealing, Ant Systems, and Genetic 
Algorithms. Over the last decade or so, IIT 

Kanpur has contributed to this effort by 
developing various methods using Genetic 
Algorithms. These methods can be found in the 
following articles: Chakroborty and Samanta 
[15], Chakroborty and Mandal [14], Chakroborty 
[13], Chakroborty and Dwivedi [12], 
Chakroborty et al. [11], Deb and Chakroborty 
[17], Chakroborty et al. [9], Chakroborty et al. 
[10], and Chakroborty et al. [8].
In the rest of this section certain results obtained 
from the various algorithms developed at IIT 
Kanpur are presented. For a detailed 
understanding of the algorithms the reader may 
refer to the relevant publications. 
4.1. Results from GA based optimizer for vehicle 
routing problems
In Chakroborty and Mandal [14] a single GA 
based algorithm called ROUTER was proposed 
for solving TSP, SVPDP, and SVPDPTW. It was 
shown that this algorithm was faster than similar 
algorithms proposed earlier (see Chatterjee et al. 
[16]). Further, this is the only algorithm which 
can handle all the three types of problems 
mentioned above;  all other methods are problem 
specific and not as general as ROUTER. The 
greatest strengths of this algorithm are its 
simplicity and its speed; results show that this 
algorithm is about 30 times faster than an 
existing fast GA based algorithm (see Chatterjee 
et al. [16]) with only a marginal decrement in 
solution quality (ROUTER solutions are at the 
most 0.8% higher than Chatterjee et al.'s [16] 
solutions).
Figure 4 shows a benchmark 70 node TSP (Part 
(a)) reported in the literature [44]. Part (b) shows 
a near-optimal solution obtained from ROUTER 
for the same problem. The near-optimal solution 
shown in Part (b) has a route length which is 
1.0074 times the known optimum route length. 
Similar routes for  other problems can be found in 
Chakraborty and Mandal [14 ].
Figure 5 shows the result obtained for a multiple 
vehicle routing problem using a GA based 
procedure developed in Chakroborty and 
Samanta [15]. In this benchmark problem, 
known as Eil51 (see [44]), there are no 
precedence constraints or time windows; each 
node only demands certain units and a vehicle 
has a finite capacity much lesser than the total 
demand of all the nodes. The solution shown in 
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Figure 5 uses five vehicles (note that there are 
five routes  each denoted by a different line 
style) and has a total route length which is only 
1.0055 times the best solution known for this 
problem. 

4.2. Results from GA based optimizer for the 
transit routing problem
In Chakroborty and Dwivedi [12] a GA based 
algorithm for transit route design was 
developed. Figure 6 shows a set of four routes 

 

Figure 5:  Multiple vehicle routing; (a) The distribution of nodes in the benchmark problem 
Eil51, (b) the near optimal route found using IIT Kanpur’s GA based method ; total route length 

= 1.0055    the shortest route length reported for this problem. 

Figure 4: Result from St70: (a) the distribution of nodes in St70 (a benchmark problem) (b) the 

near-optimal route as obtained by ROUTER; route length 1 0074= . ´  optimal length. 
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designed by the Chakroborty-Dwivedi algorithm instead of the route set reported in 
algorithm on Mandl's network-  a benchmark the literature. 
problem. The algorithm was used to determine It can be seen from the table (next page) that 
various other route sets with different number the route set obtained using the proposed 
of routes. algorithm offers a substantially lesser average 
A comparison between the performances of travel time (   ) than the route networks 
the route set obtained here with those proposed by any of the other models. This 
obtained, for the same number of routes, by results in substantial total time savings (TS). 
Mandl [30], Baaj and Mahmassani [1] and For example, for the four routes case, using the 
Kidwai [27] is provided in Table 1. In the table,  proposed route set instead of the one 
in a cell NR indicates that the result for that suggested by Mandl [30] produces a total 
particular cell was not reported by the author. saving (see last column of Table 1) of 259.5 
The comparison presented in the table uses the man-hours per day (note that the total demand 
following measures of effectiveness: is 15570 trips per day). Similarly, use of the 
· , the percentage of demand satisfied proposed route set instead of the one 
directly by the route set, suggested by Kidwai [27] produces a total 
· , the percentage of demand satisfied saving of 213 man-hours per day. Also note 
with one transfer by the route set, that in most cases the proposed route set 
· , the percentage of demand satisfied satisfies a much larger percentage of demand 
with two transfers by the route set, directly (      in the table)  a feature desirable in 
· , the percentage of demand unsatisfied any route network design. These observations 
by the route set, indicate the superiority of the proposed route 
· , the average travel time (including network design algorithm. 
transfer penalty) per user in minutes, and 4.3. Results from GA based optimizer for the 
· , the total man-hours saved per day by scheduling problem
using the route set designed by the proposed Substantial amount of work in this area has 
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Mandl [30] 

Baaj & Mah. [1] 

Kidwai [27] 

Proposed Algorithm 

69.94 

NR NR NR 

29.93  0.13 

Six routes in route set  

NR NR NR NR Mandl [30] 

Mandl [30] 

Mandl [30] 

Baaj & Mah. [1] 

Baaj & Mah. [1] 

Baaj & Mah. [1] 

Kidwai [27] 

Kidwai [27] 

Kidwai [27] 

Proposed Algorithm 

Proposed Algorithm 

Proposed Algorithm 

86.04 13.96 0    0 10.3 —  

Seven routes in route set 

NR NR   NR   NR NR  NR  

NR NR   NR   NR NR  NR  

Eight routes in route set 

80.99 19.01 0 0 12.5 610 

93.91 6.09 0 0 10.7 143 

89.15 10.85 0 0 10.15 —  

79.96 20.04 0 0 11.86 363 

84.73 15.27 0 0 11.22 197 

†mpu: minutes per user ‡mhd: man-hours per day  

 †
( )mpu

Table 1: Comparison of route sets with different number of routes 

72.95 26.91 0.13 0 12.72 213 

86.86 12 1.14 0 11.9 — 

77.92 19.62 2.4 0 11.87 407 

78.61 21.39 0 0 11.86 405 

90.38 9.58       0       0 10.46 —  
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solutions to scheduling problems with transfer transfer stops only. The schedule at the other 
considerations. Scheduling problems with stops can be deduced from the above schedule 
stochastic arrival times and finite bus easily. Other schedules which help in 
capacities have also been looked at. establishing the quality of the GA based 
In this section only one schedule developed for solutions can be seen in the articles cited in this 
the network shown in Figure 7 (a) is given in section. 
part (b) of the same figure. The schedule states 
the arrival and departure times of buses at the 

Figure 7:  “Optimal” Schedule of buses on six routes (shown in (b)) plying on the network shown 
in (a); the number of buses in Route i  is given as n i  in the figure, TWT refers to the sum of all 

the initial waiting times (IWT) and transfer times (TT) of all the passengers. 
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