
Conclusions and Future Considerations:
Parallel processing of raster functions were 3-22 times faster than ArcGIS

depending on file size. Also, processing multiple functions on a single dataset

achieved even greater performance gains (Figure 4). A final test included slope

processing of a 93GB, 25 billion pixel raster file in under 3000 seconds, indicating

continued linear performance even with enormous file sizes.

Future work should include utilization of parallel CPU threads for reading data

into RAM while the GPU processes data, which we believe will provide the most

dramatic performance increase. Additionally, because the greatest efficiencies

were demonstrated when performing multiple computations for the data on the

GPU, future work should include exploration of similar models in climatology,

ecology, remote sensing, and natural resource assessment. There are many GIS

models that require multiple iterations that can see enormous speed

improvements if redesigned within a GPU context.

Results and Discussion:
On average, the introduction of CUDA provided a 7x improvement over the same

function used in ArcGIS.

Execution time for the CUDA functions exhibited a very stable and predictable

linear trend for all functions over the various size raster files, allowing us to

better predict response times for larger data sets. To test the linear fit we

forecasted execution time out to a 93GB (25 billion pixels) raster and predicted

an execution time of 3100. Our actual processing of the file completed in under

3000 seconds. Unfortunately, the larger file was too large to process in ArcGIS

so a comparison between the products is impossible to determine.

In contrast, while most of the execution times for ArcGIS appear linear with

respect to size, both slope and aspect execution deviate substantially from a

linear fit when the size of the input raster was between 1.4GB and 4.0GB. We

suspect that the deviation is related to the ESRI ADF format’s separation of data

into files between 1.2 GB and 2GB or separate algorithm for datasets over some

threshold size.

The greatest bottleneck was obtaining data from the disk and moving to RAM

(Figure 1, step 1). Once data was on the GPU, parallelization took over and made

short work of the processing. Numerous strategies were used to improve the

data acquisition step with noticeable results. Testing under other hardware

configurations confirmed that having more GPU memory to load larger chunks of

data played a bigger role in execution than having more processing streams.

Parallelizing Raster-Based Functions in GIS with CUDA C
Sean Kirby, University of Maryland, Eastern Shore

William Kostan, University of Virginia

Dr. Arthur J. Lembo, Jr., Salisbury University

Model Instability

Introduction:
A continuing challenge in GIScience and many other fields is the efficient and

economical processing of massive data sets. We describe how to leverage

massive parallel processing through general purpose computing using the

graphics processing unit (GPGPU) for raster GIS operations. Using video-

gaming cards to create parallel processing solutions within the GPU is relatively

new and almost nonexistent in GIScience. By designing a software add-on built

to run select raster analysis operations on a CUDA-enabled GPU, we were able

to achieve a 7x speed improvement compared to traditional (ArcGIS) raster

processes. In addition, our approach allows us to perform raster processing in

under an hour for 93GB files with over 25 billion pixels. Finally, we identify key

areas of future work to improve execution time.

Figure 3: Comparison of ArcGIS and CUDA-C generated performance of several raster functions as

measured by execution time show that CUDA processes the data 3-22 times faster than the corresponding

ArcGIS process. In addition, the CUDA process was perfectly linear (R2 = .98), while the ArcGIS process

exhibited serious instability between 1.25GB and 4GB for Slope and Aspect.

Figure 5: CUDA vs. ArcGIS performance in executing six spatial analysis

transformations per dataset as measured by execution time

Figure 1: CUDA execution model

* Additional speed improvements may be achieved by running this step as separate, parallel

threads on the CPU, thereby allowing the CPU to prepare the next data block while the GPU

is processing data

Data and Methods:
Fourteen ESRI FLT raster files (ranging from 24MB to 12GB) were processed and

analyzed using 3x3 kernel functions for slope, aspect, terrain ruggedness, min,

max, range, and mean. These functions were chosen as they represent

“embarrassingly” parallel functions that can be run independent from one

another, ideal for GPU processing. Each file was processed 20 times to

determine the average speed using both ArcGIS and CUDA-C. The CUDA-C

process (Figure 1) included:

1. Partition data by rows and read into an array in memory*

2. Copy data array to GPU.

3. Launch GPU kernel for raster processing.

4. Process data in parallel in GPU through a combination of blocks and

threads.

5. Upon completion of each kernel, copy data from GPU to the CPU.

6. Write output to the appropriate file (one file per raster function)

7. Additional kernels are launched from data already on the GPU

Figure 2: Oxford County, MD, LiDAR Imagery of Oxford County before (left) and

after (right) slope transformation.

Figure 4: CUDA program integrated into ArcMap 10.0 as a toolbox with full graphical user

interface (GUI)

CUDA Toolbox

Final Software Package:
One of the primary goals of the project was to create a simplistic add-

on to ArcGIS for dramatic performance improvement. This was

accomplished by incorporating the CUDA executable into a model in

ArcToolbox for use any computer with ArcGIS and a CUDA-enabled

GPU

Acknowledgments:
Research was funded by the National Science Foundation under grant number

CCF-1156509 and hosted by Salisbury University.

File Size (MB) ASI Factor

24.719 22.275

521.048 6.597

976.563 3.785

1202.559 5.237

1285.400 8.960

2321.548 9.900

2595.520 3.532

2682.037 8.565

4154.205 4.903

5802.155 4.802

7724.762 5.625

9536.743 6.120

11539.459 5.392

12470.003 4.390

Global Average 7.149

Average Speed Improvement (ASI)

