MATH 100 10-20-2008

In July of 2008 India's population was estimated to be $1,147,995,904$. At that time India's population was estimated to be growing at the rate of 1.578% per year. Let's approximate India's population at 1.148 billion and assume its annual rate of growth is approximately 1.6%. On that basis we will estimate India's approximate population in billions for the years 2008 to 2018 inclusive.

Year	Years Since 2008 t	India's Population (billions) $\mathrm{P}(\mathrm{t})$	$\frac{P(t)}{P(t-1)}$
2008	0	1.148	
2009	1		1.016
2010	2		
2011	3		
2012	4		
2013	5		
2014	6		
2015	7		
2016	8		
2017	9		
2018	10		

$$
\begin{aligned}
\mathrm{P}(1) & =\mathrm{P}(0)+0.016 \mathrm{P}(0) \\
& =(1.016) \mathrm{P}(0) \\
& =(1.016)(1.148) \\
& \approx
\end{aligned}
$$

About when will India's population reach 1.3 billion?
In the situation considered here we refer to 1.6% as India's growth rate and (1.016) as India's growth factor.

The function defined below can be used to estimate India's population in billions t years after 2008.
$\mathrm{P}(\mathrm{t})=$

Can we estimate when India's population will double?

Exponential Notation and Working with Exponents

In exercises $1 \& 2$ Calculate each of the following:

$$
2^{-1}=\ldots \quad ; 2^{-2}=\ldots \quad ; 2^{-3}=\ldots \quad ; 2^{-4}=\ldots \ldots ; 2^{-5}+\ldots
$$

2. $10^{4}=$ \qquad $; 10^{3}=$ \qquad ; $10^{2}=$ \qquad ; $10^{1}=$ \qquad $; 10^{0}=$ \qquad ; $10^{-1}=$ \qquad ; $10^{-2}=$ \qquad ; $10^{-3}=$ \qquad $; 10^{-4}=$ \qquad
In exercises 3-14 solve for x :
3. $\left(2^{3}\right)^{5}=2^{x}$
4. $\left(2^{3}\right)\left(2^{5}\right)=2^{x}$
5. $\frac{2^{5}}{2^{3}}$
6. $\frac{2^{3}}{2^{5}}$
7. $120,000=1.2\left(10^{x}\right)$
8. $\quad 0.000012=1.2\left(10^{x}\right)$
9. $120,000=1.2\left(10^{x}\right)$
10. $0.0000012=1.2\left(10^{x}\right)$
11. $2^{x}\left(2^{7}\right)=2^{3}$
12. $\left(2^{\mathrm{x}}\right)^{2}=2$.
13. $\left(2^{x}\right)^{3}=2$
14. $8^{\frac{2}{3}}=x$
15. Write in scientific notation: $1,230,000$
16. Write in scientific notation: 0.00000000123
17. Simplify each expression:
a. $x^{3} \cdot x^{5} \cdot x^{-1}$
b. $\frac{x^{7}}{x^{2}} \cdot x^{-3}$
c. $\sqrt{x^{6}}$
