MATH 100 10-20-2008

In July of 2008 India's population was estimated to be 1,147,995,904. At that time India's population was estimated to be growing at the rate of 1.578% per year. Let's approximate India's population at 1.148 billion and assume its annual rate of growth is approximately 1.6%. On that basis we will estimate India's approximate population in billions for the years 2008 to 2018 inclusive.

Year	Years Since	India's Population	P(t)
	2008	(billions)	$\overline{P(t-1)}$
	t	P(t)	
2008	0	1.148	
2009	1		1.016
2010	2		
2011	3		
2012	4		
2013	5		
2014	6		
2015	7		
2016	8		
2017	9		
2018	10		

$$P(1) = P(0) + 0.016P(0)$$

$$= (1.016)P(0)$$

$$= (1.016)(1.148)$$

$$\approx$$

About when will India's population reach 1.3 billion?

In the situation considered here we refer to 1.6% as India's *growth rate* and (1.016) as India's *growth factor*.

The function defined below can be used to estimate India's population in billions t years after 2008.

$$P(t) =$$

Can we estimate when India's population will double?

Exponential Notation and Working with Exponents

In exercises 1 & 2 Calculate each of the following:

1. $2^5 = \underline{\hspace{1cm}}; 2^4 = \underline{\hspace{1cm}}; 2^3 = \underline{\hspace{1cm}}; 2^2 = \underline{\hspace{1cm}}; 2^1 = \underline{\hspace{1cm}}; 2^0 = \underline{\hspace{1cm}};$

 $2^{-1} = \underline{\hspace{1cm}}; 2^{-2} = \underline{\hspace{1cm}}; 2^{-3} = \underline{\hspace{1cm}}; 2^{-4} = \underline{\hspace{1cm}}; 2^{-5} + \underline{\hspace{1cm}}$

2. $10^4 = \underline{}; 10^3 = \underline{}; 10^2 = \underline{}; 10^1 = \underline{}; 10^0 = \underline{};$

 $10^{-1} =$ _____; $10^{-2} =$ _____; $10^{-3} =$ _____; $10^{-4} =$ ______

In exercises 3-14 solve for x:

3.
$$(2^3)^5 = 2^x$$

9.
$$120,000 = 1.2(10^{x})$$

4.
$$(2^3)(2^5) = 2^x$$

10.
$$0.0000012 = 1.2(10^{x})$$

5.
$$\frac{2^5}{2^3}$$

11.
$$2^{x}(2^{7}) = 2^{3}$$

6.
$$\frac{2^3}{2^5}$$

12.
$$(2^x)^2 = 2$$
.

7.
$$120,000 = 1.2(10^{x})$$

13.
$$(2^x)^3 = 2$$

8.
$$0.000012 = 1.2(10^{x})$$

14.
$$8^{\frac{2}{3}} = x$$

15. Write in scientific notation: 1,230,000

16. Write in scientific notation: 0.00000000123

17. Simplify each expression:

a.
$$x^3 \cdot x^5 \cdot x^{-1}$$
 b. $\frac{x^7}{x^2} \cdot x^{-3}$ c. $\sqrt{x^6}$

b.
$$\frac{x^7}{x^2} \cdot x^{-3}$$