## An Easy Way to Find Rules for Inverse Functions

Consider the three functions whose graphs are shown to the right.

1) $\mathrm{f}(\mathrm{x}): y=2 \sqrt{x}$
2) $g(x): y=0.25 x^{2}$
3) $\mathrm{h}(\mathrm{x}): y=x$

Observe the following:
$\mathrm{g}(\mathrm{f}(\mathrm{x}))=\mathrm{g}(2 \sqrt{x})=0.25(2 \sqrt{x})^{2}=$ $\qquad$
$\mathrm{f}\left(\mathrm{g}(\mathrm{x})=\mathrm{f}\left(.25 x^{2}\right)=2 \sqrt{0.25 x^{2}}=\right.$ $\qquad$


So $f$ and $g$ are inverse functions. We sometimes denote the inverse of $f$ by $f^{-1}$ and the inverse of $g$ by $g^{-1}$. In our example $f^{-1}(x)=g(x)$ and $g^{-1}(x)=f(x)$. We can also see that the graph of $g$ is the reflected image of the graph of $f$ about the line $y=x$.

An easy way to find an inverse function follows.
Find the inverse of the function defined by $y=2 \sqrt{x}$.

| The original function: | $y=2 \sqrt{x}$ |
| :--- | :--- |
| Solve the original equation for $\mathrm{x}:$ | $y^{2}=4 x$ |
|  | $0.25 y^{2}=x$ |
| Switch $x$ and $y ;$ Here is the inverse. | $y=0.25 x^{2}$ |

Now find the inverse of the function defined by $y=2 x+3$. Graph the original function and its inverse.

| The original function: |  |
| :--- | :--- |
|  |  |
| Solve the original equation for $\mathrm{x}:$ |  |
|  |  |
| Switch $x$ and $y$; Here is the inverse. |  |



Find and graph the inverse of the function defined by $y=\frac{5}{x+2}$. Graph both the original function and its inverse.


