Consider the three functions whose graphs are shown to the right.

- 1) $f(x): y = 2\sqrt{x}$
- 2) g(x): $y = 0.25x^2$
- 3) h(x): y = x

Observe the following:

So f and g are inverse functions. We sometimes denote the inverse of f by f^{-1} and the inverse of g by g^{-1} . In our example $f^{-1}(x) = g(x)$ and $g^{-1}(x) = f(x)$. We can also see that the graph of g is the reflected image of the graph of f about the line y = x.

An easy way to find an inverse function follows.

Find the inverse of the function defined by $y = 2\sqrt{x}$.

The original function:	$y = 2\sqrt{x}$
Solve the original equation for x:	$y^2 = 4x$
	$0.25 y^2 = x$
Switch <i>x</i> and <i>y</i> ; Here is the inverse.	$y = 0.25x^2$

Now find the inverse of the function defined by y = 2x + 3. Graph the original function and its inverse.

The original function:	
Solve the original equation for x:	
Switch <i>x</i> and <i>y</i> ; Here is the inverse.	

Find and graph the inverse of the function defined by $y = \frac{5}{x+2}$. Graph both the original function and its inverse.

