Working With Exponential and Logarithm Functions

The Exponential Function Base e for Continuous Growth or Decay

Given a situation where a population is growing (or decaying) continuously at rate r , or $100 \mathrm{r} \%$, per time period for t time periods and the population at time $\mathrm{t}=0$ is c , the population after t time periods, denoted by $\mathrm{P}(\mathrm{t})$, is given by the following rule:

$$
\mathrm{P}(\mathrm{t})=\mathrm{ce} \mathrm{e}^{\mathrm{rt}}
$$

Example. India's population in 2008 was estimated to be about 1.148 billion and its annual rate of population growth was estimated to be 1.46%. (a) Assuming, India's growth rate remains constant for the next two decades, what will be India's population in 2028 ? (b) About when did India's first exceed 1 billion?

Example. The carbon atom has a radioactive isotope called C-14 that occurs naturally in small quantities. This isotope combines with oxygen to form CO_{2} in the atmosphere, which is absorbed by plants and animals during their lives. When a living thing dies, it no longer absorbs C-14. If organic material becomes buried and is kept form absorbing fresh C-14 from air or water, then the concentration of $\mathrm{C}-14$ in the organic material will decrease over time due to the process of radioactive decay. The half-life of the decay process is known to be 5715 years. The radioactivity of living material due to the presence of $\mathrm{C}-14$ is estimated to be 14.6 atomic disintegrations per minute per gram of carbon, as measured by a Geiger counter.

If we let $R(t)=$ the radio activity remaining in the sample t years after being buried, then

$$
\mathrm{R}(\mathrm{t})=14.6 \mathrm{e}^{\mathrm{rt}} \text { where } \mathrm{r} \text { denotes the rate of decay. }
$$

We can determine the decay rate r by using the fact that $\mathrm{C}-14$'s half life is 5715 years.

$$
\mathrm{R}(5715)=7.3=14.6 \mathrm{e}^{\mathrm{r}(5715)}
$$

Solving for r ,

$$
0.5=\mathrm{e}^{5715 \mathrm{r}} \rightarrow \ln (0.5)=5715 \mathrm{r} \rightarrow \mathrm{r} \approx-0.0001213
$$

Hence,

$$
\mathrm{R}(\mathrm{t}) \approx 14.6 \mathrm{e}^{-0.0001213 \mathrm{t}}
$$

Suppose a bone fragment found in a burial mound has a radioactivity count of 6.32 counts per minute per gram of carbon. How old is the bone fragment?

Rules for Calculating with Logarithms

Rule	For Logarithms	For Exponents
Product Rule	$\operatorname{Ln}(x y)=\operatorname{Ln}(x)+\operatorname{Ln}(y)$	$\mathbf{e}^{x} e^{y}=e^{x+y}$
Quotient Rule	$\operatorname{Ln}(x / y)=\operatorname{Ln}(x)-\operatorname{Ln}(y)$	$\mathbf{e}^{x} / \mathbf{e}^{y}=e^{x-y}$
Power Rule	$\operatorname{Ln}\left(x^{y}\right)=y \operatorname{Ln}(x)$	$\left(\mathbf{e}^{x}\right)^{y}=\mathbf{e}^{x y}$

Make use of the rules for exponents and logarithms in solving the following equations.

1. $\mathbf{1 0 0}=50 \mathrm{e}^{0.07 \mathrm{x}}$
2. $\mathbf{8 0 0}=\mathbf{2 0 0 0} \mathrm{e}^{\mathbf{2 0 r}}$
3. $\operatorname{Ln}(2 x)=4$
4. $\operatorname{Ln}(5 x-3)=10$

Solve for x :
4. $y=1000 e^{0.25 x}$
6. $\operatorname{Ln}(3 x+8)=12$

