1. For the following exercises use your general knowledge of the phenomenon to sketch a graphical model of the relationship between the pair of variables.

The height (Y) of a corn stalk and the number of weeks (X) since planting.
2. Sue is in charge of a movie series. She knows that the number of people who will go to a movie depends on the price charged per ticket. At $\$ 5$ per ticket she found that 280 people attended. The next week, at $\$ 4$ per ticket, 360 people attended. Use that data to find a modified inverse-proportion equation of the form

$$
Q=\frac{c}{P}-d
$$

for the demand (\mathbf{Q}) for movie tickets as a function of their price (\mathbf{P}).
3. Consider the four functions: $f(x)=\frac{4}{x}, g(x)=\frac{4}{x-3}, h(x)=\frac{4}{x-3}+5, j(x)=\frac{-4}{x}$

Graph the four functions on the same pair of axes and explain how the graphs are related to the graph of f in terms of shifts and flips.

4. If $f(x)=2 x+3$, then evaluate each of the following expressions:
a. $\quad \mathrm{f}(5)=$
b. $\mathrm{f}(-2)=$
c. $f(w)=$
d. $f(x-3)=$
e. $f(x / 2)=$
g. $f(3 x+5)=$
h. $\mathrm{f}\left(\frac{x-3}{2}\right)=$
i. $f\left(\frac{1}{x}\right)=$
5. If $g(x)=3 x+7$ and $f(x)=2 x-4$ find rules for each of the following:
a. $\quad g(f(x))$
b. $\quad f(g(x)$
6. If $\mathbf{Z}(Y)$ and $Y(X)$ are defined as below, write a rule for $\mathbf{Z}(\mathbf{X})$.

$$
Z(Y)=3 Y+5 \text { and } Y(X)=5 X
$$

7. If $G(y)=4 y-3$ and $F(y)=\frac{y+3}{4}$ find rules for each of the following:
a. $G(F(y))$
b. $\quad F(G(y))$
