1. Consider the line with equation $y=2 x-3$.
a. Graph the line on the axes to the right.
b. What equation would describe a line that is parallel to the line $y=2 x-3$ but is shifted 4 units to the right? Graph that line on the axes to the right.
c. Sketch the graph of $y=0.5 x+1.5$
2. If $f(x)=\frac{5}{x}-3$, what is a formula for $f(x-4)$?

3. Each of the following is has a graph that is the graph of $f(x)=\frac{5}{x}-3$ shifted 2 units. Tell the direction of the shift: right, left, up, down.
a. $\quad f(x)=\frac{5}{(x-2)}-3$
b. $f(x)=\frac{5}{(x+2)}-3$
c. $f(x)=\frac{5}{x}-1$
d. $f(x)=\frac{5}{x}-5$
4. Find the values of the parameters s and d if the points $(3,-2)$ and $(6,4)$ are on the graph of

$$
f(x)=\frac{s}{(x-d)}
$$

5. If $g(x)=3 x+7$ and $f(x)=2 x-4$ find rules for each of the following:
a. $\quad g(f(x))$
b. $\quad f(g(x)$
6. If $\mathrm{Z}(\mathrm{Y})$ and $\mathrm{Y}(\mathrm{X})$ are defined as below, write a rule for $\mathrm{Z}(\mathrm{X})$.

$$
\mathrm{Z}(\mathrm{Y})=3 \mathrm{Y}+5 \text { and } \mathrm{Y}(\mathrm{X})=5 \mathrm{X}
$$

7. If $G(y)=4 y-3$ and $F(y)=\frac{y+3}{4}$ find rules for each of the following:
a. $G(F(y))$
b. $\quad F(G(y))$
8. Solve for x :
a. $y=2 x-3$
b. $y=(x+3) / 2$
9. A pair of functions $y=f(x)$ and $y=g(x)$ are called inverse functions provided for all values of x in their common domain $g(f(x))=f(g(x))=x$. Find rules for the inverses of each of the following functions.
a. $H(x)=0.5 x+10$
b. $\mathrm{K}(\mathrm{y})=\frac{3}{y}+4$
