We have seen that for the general quadratic function $f(x)=\mathbf{a x}+\mathbf{b x}+\mathbf{c}$ where $\mathbf{a} \neq \mathbf{0}$, the graph of f is a \qquad with vertex at \qquad .

The parabola opens up if \qquad and opens down if \qquad . The graph's intercept on the vertical axis is at \qquad . The intercepts on the horizontal axis, if any exist, will correspond to roots of the function. That is, at those values for x such that $f(x)=0$. (How can it occur that there are no intercepts on the horizontal axis?)

Let's find all values of x such that $\mathrm{f}(\mathrm{x})=0$, if any exist.
$0=a x^{2}+b x+c$
$0=a\left(x-\frac{-b}{2 a}\right)^{2}+\frac{4 a c-b^{2}}{4 a} \quad$ (How do we know this?)
$\frac{b^{2}-4 a c}{4 a^{2}}=\left(x+\frac{b}{2 a}\right)^{2}$
$\left(x+\frac{b}{2 a}\right)= \pm \sqrt{\frac{b^{2}-4 a c}{4 a^{2}}} \quad$ (Why do we have the " \pm " symbol?)
$x+\frac{b}{2 a}=\frac{\sqrt{b^{2}-4 a c}}{2 a}$
So, $\quad x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$. (Under what conditions do solutions actually exist?)

