Exponential Growth

An initial amount of A grows at rate r per year compounded n times per year. The amount after t years, denoted by $\mathrm{V}(\mathrm{t})$ is given by
$V(t)=A\left(1+\frac{r}{n}\right)^{n t} \quad$ Which is equivalent to
$V(t)=A\left[1+\frac{1}{\left(\frac{n}{r}\right)}\right]^{\left(\frac{n}{r}\right)^{r t}}$
We want to consider what happens to $\mathrm{V}(\mathrm{t})$ as the number of compounding periods increases without bound. That is, becomes infinite.

Suppose we replace (n / r) with x .
$V(t)=A\left\{\left[1+\frac{1}{x}\right]^{x}\right\}^{r t}$.
We can consider what happens to $\mathrm{V}(\mathrm{t})$ as n becomes large by considering what happens as x becomes large. Complete the table below.

X	$\left[1+\frac{1}{x}\right]^{x}$
10	
100	
1000	
10000	
100000	
1000000	

So, for very large values of $\mathrm{x},\left[1+\frac{1}{x}\right]^{x}$ is about 2.7182 .
Hence, for very large values of n,

$$
V(t) \approx A\{2.7182\}^{r t}
$$

Actually, for arbitrarily large values of n, we have
(*) $\quad V(t) \approx A e^{r t}$
$\mathrm{e} \approx 2.7182$ and e is a number that cannot be expressed exactly as a decimal.
Continuous exponential growth (decay) is modeled by equation (*).

