1. The oil flow from a well is highest when the well is first tapped and decreases over time by a specific percentage each month that the well is tapped. Suppose a particular well had a flow of 1000 barrels per day when it was first tapped and that its flow has been decreasing by 6% per month since then. Express the relationship between the flow rate in barrels/day and the number of months since the well was first tapped.

Let $t=$ the number of months since the well was first tapped. $F(t)=$ the flow rate, in barrels/day, after t months of production

What flow rate would you expect the well to show after 2 years of production?

t	$\mathrm{F}(\mathrm{t})$
0	1000.00
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
24	

2. The net annual income of the Acme Co. was $\$ 240$ million in 1990 and has been increasing at the rate of 10% per year since. If we let $t=$ the number of years since 1990 and $A(t)=$ Acme Co.'s net annual income t years after 1990, can we represent $A(t)$ as a function of t ?

Complete the table below and plot $\mathrm{A}(\mathrm{t})$ vs t using the grid below.

Years	Acme Co.'s		Ratio
Since 1990	Net Annual Income (\$millions) $\mathrm{t}(\mathrm{t})$	$\Delta \mathrm{A}(\mathrm{t})$	$\frac{A(t)}{A(t-1)}$
0	240.00		
1			
2			
3			
4			
5			
6			

