Systems of Linear Equations

Suppose a total of $\mathbf{\$ 1 2 , 0 0 0}$ is invested in two funds paying $\mathbf{4 \%}$ and 5% simple interest. The yearly interest on the two investments is $\mathbf{\$ 5 6 0}$. How much is invested at each rate?

Let
$x=$ the dollar amount invested at 4%, and
$y=$ the dollar amount invested at 5%.

Since the total amount invested is $\mathbf{\$ 1 2 , 0 0 0}$, we know that

$$
\begin{equation*}
x+y= \tag{1}
\end{equation*}
$$

\qquad
The interest earned on the 4% fund $=$ \qquad .

The interest earned on the 5% fund $=$ \qquad .

Since the total yearly interest is $\mathbf{\$ 5 6 0}$, we know that
(2) \qquad $+$ \qquad $=560$.

Sketch the graphs of equations (1) and (2).

Can we use the graph to find values for x and y that satisfy both equation (1) and equation (2) simultaneously? What can we conclude?

Can we apply algebraic techniques to solve this problem?
Our problem can be concisely stated as follows:
Find values for x and y so that
(1) $x+y=12,000$, and
(2) $0.04 x+0,05 y=560$.

We have already solved the problem by a graphical method. Now, we apply an algebraic technique.

Solve equation (1) for y.
(*) $\mathbf{y}=$ \qquad
Substitute that value for y in equation (2).
$0.04 x+0.05(\square)=560$
Solve this new equation for x. Once x is found, we can use equation (*) to solve for y.

The algebraic method illustrated above is called solution by substitution. Show how to solve the following problem using solution by substitution.

Find x and y so that

$$
\begin{aligned}
& -4 x+2 y=4, \text { and } \\
& 3 x-2 y=-9 .
\end{aligned}
$$

