A colony of bacteria is grown under ideal laboratory conditions. The table below gives the number of bacteria present at the end of each hour. Formulate an exponential functional model relating the number of bacteria in the colony to the time elapsed. | Time (hours) | Number of
Bacteria
in Colony | Change
in Colony
Size | Percent
Change | First
Model's
Colony Size | Error | Percent
Error | |--------------|------------------------------------|-----------------------------|--|---------------------------------|-------|------------------| | 0 | 1,000 | | | | | | | 1 | 1,600 | | | | | | | 2 | 2,800 | | | . 1 | | | | 3 | 5,000 | | | | | | | 4 | 8,400 | | ************************************** | | | | | 5 | 14,100 | | | | | | First Proposed Exponential Model: | Time (hours) | Number of
Bacteria | Second
Model's | Error | Percent
Error | |--------------|-----------------------|--------------------|---|------------------| | | in Colony | Colony Size | | | | 0 | 1,000 | | | | | 1 | 1,600 | | , | | | 2 | 2,800 | | | | | 3 | 5,000 | | | | | 4 | 8,400 | | | | | 5 | 14,100 | | | | **Second Exponential Model:**