Numerical Measures of Central Tendency – Reading Test Scores

i	NewMethodScore(i)	Deviation from Mean	Deviation Squared
	x(i)	$(x_i - \overline{x})$	$(x_i - \overline{x})^2$
1	80		
2	76		
3	70		
4	80		
5	66		
6	85		
7	79		
8	71		
9	81		
10	76		

Column Sum	Column Sum	Column Sum
$\sum x_i$	$\sum (x_i - \overline{x})$	$\sum (x_i - \overline{x})^2$
Sample Mean		Sample Variance
$\overline{x} = \sum x_i \div 10$		$s^2 = \sum (x_i - \overline{x})^2 \div 9$
		Sample Standard
Sample Median		Deviation
		$s = \sqrt{s^2}$