Example 2. Suppose we select a number at random from the interval 0 < x < 1. This distribution, known as a *uniform distribution* and its probability distribution f(x) is shown below.

It is the case that the mean of this distribution μ is 0.5 and the standard deviation σ is approximately 0.2887.

Displayed below is a histogram showing a simulated sampling distribution of the means of 10,000 samples of 10 trials each.

The mean of the sampled population, $\mu = 0.5$ The mean of our simulated sampling distribution, $\mu_{\bar{x}} = 0.4982$ The standard deviation of the sampled population, $\sigma \approx 0.2887$ The standard deviation of the simulated sampling distribution, $\sigma_{\bar{x}} \approx 0.091 \approx \frac{\sigma}{\sqrt{10}}$

Given a distribution with a mean μ and variance σ^2 , the sampling distribution of the mean approaches a normal distribution with a mean (μ) and a variance σ^2/N as N, the sample size, increases. Regardless of the shape of the original distribution, the sampling distribution of the mean approaches a normal distribution. Usually a normal distribution is approached very quickly as N increases. N is the sample size for each mean and not the number of samples. In a sampling distribution the number of samples is assumed to be infinite. The sample size is the number of scores in each sample; it is the number of measurements that goes into the computation of each mean. (This definition is adapted from David Lane's "Hyperstat Online Statistics Textbook" at <u>http://davidmlane.com/hyperstat/index.html</u>.)