Methods for Describing Sets of Data

I. Describing Qualitative Data

Example: Data on 22 Adult Aphasiacs

APHASIA.MTP	
	C1-T
	TYPE
1	Brocas
2	Anomic
3	Anomic
4	Conduction
5	Brocas
6	Conduction
7	Conduction
8	Anomic
9	Conduction
10	Anomic
11	Conduction
12	Brocas
13	Anomic
14	Brocas
15	Anomic
16	Anomic
17	Anomic
18	Conduction
19	Brocas
20	Anomic
21	Conduction
22	Anomic
23	

A class is one of the categories into which qualitative data can be classified.
Identify the classes (categories) in this example.

A class frequency is the number of observations in the data set falling in a particular class.

The class relative frequency is the class frequency divided by the total number of observations in the data set.

The class percentage is the class relative frequency multiplied by 100.
Complete the summary table below.

Type	Frequency	Relative Frequency	Percent	Cumulative Percent
Anomic				
Brocas				
Conduction				
Total				

Graphing Qualitative Data

II. Describing Quantitative Data - Graphical

III. Numerical Measures of Central Tendency

The central tendency of a set of measurements is the tendency of the data to cluster, or center, about certain numerical values.

The mean of a set of quantitative data is the sum of the measurements divided by the number of measurements contained in the data set.

Minitab calculation of mean death age:

Column Mean

Mean of Age at Death $=69.605$
The median of a quantitative data set is the middle number when the measurements are arranged in ascending (or descending) order. If the number of measurements is even, then the median is the mean of the two measurements in the middle.

Minitab calculation of the median death age:
Column Median
Median of Age at Death $=67.500$
The mode is the measurement that occurs most frequently in the data set.
In the case of the death ages of presidents, 60 and 67 occur most frequently.
If we consider the histogram of the presidents' ages at death shown on the previous page, the measurement class containing the largest relative frequency is called the modal class. In that example the modal class is the interval 62.5-67.5. We can call the mode the midpoint of the interval or 65.

IV. Numerical Measures of Variability

The variability of a set of measurements is the spread of the data.
The range of a set of quantitative data is the difference between that largest and smallest measurement.

Minitab calculation of the range of the presidents' death ages:
Column Range
Range of Age at Death $=47.000$

The sample variance for a sample of n measurements is equal to the sum of the squared distances from the mean divided by $(n-1)$. The symbol s^{2} is used to represent the sample variance.

In the case of the presidents ages at death the sample variance is $\mathbf{1 4 1 . 4 3 4 5 6 6}$.
The sample standard deviation, s, is defined to be the positive square root of the sample variance, s^{2}. That is $s=\sqrt{ } s^{2}$.

Minitab Calculation of the Standard Deviation

Column Standard Deviation

Standard deviation of Age at Death $=11.893$

In-Class Example (EPAGASS)

