Methods for Describing Sets of Data

I. Describing Qualitative Data

Example: Data on 22 Adult Aphasiacs

APHASIA.MTP ***			
	C1-T		
Ļ	TYPE		
1	Brocas		
2	Anomic		
3	Anomic		
4	Conduction		
5	Brocas		
6	Conduction		
7	Conduction		
8	Anomic		
9	Conduction		
10	Anomic		
11	Conduction		
12	Brocas		
13	Anomic		
14	Brocas		
15	Anomic		
16	Anomic		
17	Anomic		
18	Conduction		
19	Brocas		
20	Anomic		
21	Conduction		
22	Anomic		
23			

A *class* is one of the categories into which qualitative data can be classified.

Identify the classes (categories) in this example.

A *class frequency* is the number of observations in the data set falling in a particular class.

The *class relative frequency* is the class frequency divided by the total number of observations in the data set.

The class percentage is the class relative frequency multiplied by 100.

Complete the summary table below.

Туре	Frequency	Relative Frequency	Percent	Cumulative Percent
Anomic				
Brocas				
Conduction				
Total				

Graphing Qualitative Data

		-
President	Age at Death	Dot Plot of Presidents' Ages at Death
Washington	67	
Adams	60	<u> </u>
Jefferson	83	50 60 70 80 90
Madison	85	Age at Death
Monroe	73	
Adams	80	Character Stem and Loof Dianlay
Jackson	78	Character Stem-and-Leaf Display
Van Buren	79	
Harrison	68	Stem-and-leaf of Age at D N = 38
Tyler	71	Leaf Unit = 1.0
Polk	53	
Taylor	65	2 4 69
Fillmore	74	3 5 3
Pierce	64	7 5 6678
Buchanan	77	14 6 0003344 (6) 6 567778
Lincoln	56	18 7 011234
Johnson	66	12 7 7889
Grant	63	8 8 013 5 8 58
Hayes	70	3 9 033
Garfield	49	
Arthur	56	
Cleveland	71	Histogram
Harrison	67	-
McKinley	58	Presidents' Ages at Death
Roosevelt	60	-
Taft	72	
Wilson	67	
Harding	57	6_
Coolidge	60	
Hoover	90	
Roosevelt	63	
Truman	88	
Eisenhower	78	
Kennedy	46	
Johnson	64	45 50 55 60 65 70 75 80 85 90 95
Nixon	81	Age at Death
Ford	93	
Reagan	93	
	~~	

II. Describing Quantitative Data - Graphical

III. Numerical Measures of Central Tendency

The *central tendency* of a set of measurements is the tendency of the data to cluster, or center, about certain numerical values.

The *mean* of a set of quantitative data is the sum of the measurements divided by the number of measurements contained in the data set.

Minitab calculation of mean death age:

Column Mean Mean of Age at Death = 69.605

The *median* of a quantitative data set is the middle number when the measurements are arranged in ascending (or descending) order. If the number of measurements is even, then the median is the mean of the two measurements in the middle.

Minitab calculation of the median death age:

Column Median Median of Age at Death = 67.500

The mode is the measurement that occurs most frequently in the data set.

In the case of the death ages of presidents, 60 and 67 occur most frequently.

If we consider the histogram of the presidents' ages at death shown on the previous page, the measurement class containing the largest relative frequency is called the *modal class*. In that example the modal class is the interval 62.5-67.5. We can call the mode the midpoint of the interval or 65.

IV. Numerical Measures of Variability

The variability of a set of measurements is the spread of the data.

The *range* of a set of quantitative data is the difference between that largest and smallest measurement.

Minitab calculation of the range of the presidents' death ages:

Column Range Range of Age at Death = 47.000 The *sample variance* for a sample of *n* measurements is equal to the sum of the squared distances from the mean divided by (n - 1). The symbol s^2 is used to represent the sample variance.

In the case of the presidents ages at death the sample variance is 141.434566.

The *sample standard deviation*, *s*, is defined to be the positive square root of the sample variance, s^2 . That is $s = \sqrt{s^2}$.

Minitab Calculation of the Standard Deviation

Column Standard Deviation Standard deviation of Age at Death = 11.893

In-Class Example (EPAGASS)