Review Exercises 11/18/08

- 1. Suppose x is a binomial random variable with n = 8 and p = 0.5.
 - a. Compute μ and σ .
 - b. Compute the probability of at least 7 successes. That is $P(x \ge 7)$.
- 2. Suppose x is a binomial random variable with n = 20 and p = 0.5.
 - a. Compute μ and σ .
 - b. Compute the probability of at least 14 successes. That is $P(x \ge 14)$.
- 3. Suppose x is a normally distributed random variable with $\mu=4$ and $\sigma=1$.
 - a. $P(x \le 6)$
 - b. $P(x \ge 7)$
- 4. A random sample of 100 observations from a normally distributed population possesses a mean \bar{x} of 80 and a standard deviation s of 12. Specify a 90% confidence interval for μ . In this case what is our sampling error? What should our sample size be to estimate μ with a sampling error of 1.0 with 90% confidence?
- 5. A random sample of 16 observations from a population that can be assumed to be normal has a mean \bar{x} of 10 and a standard deviation s of 2. Specify a 90% confidence interval for μ .
- 6. A random sample of n = 100 observations from a population with s = 60 and $\bar{x} = 110$. Test H_0 : $\mu = 100$ against H_a : $\mu > 100$ using $\alpha = 0.05$. Find the p-value. Interpret your results.

7. A random sample of n = 20 observations from a random population with s = 60 and $\bar{x} = 110$. Test H_0 : $\mu = 100$ against H_a : $\mu > 100$ using $\alpha = 0.05$. Find the *p*-value. Interpret your results.