Review Exercises 11/18/08 - 1. Suppose x is a binomial random variable with n = 8 and p = 0.5. - a. Compute μ and σ . - b. Compute the probability of at least 7 successes. That is $P(x \ge 7)$. - 2. Suppose x is a binomial random variable with n = 20 and p = 0.5. - a. Compute μ and σ . - b. Compute the probability of at least 14 successes. That is $P(x \ge 14)$. - 3. Suppose x is a normally distributed random variable with $\mu=4$ and $\sigma=1$. - a. $P(x \le 6)$ - b. $P(x \ge 7)$ - 4. A random sample of 100 observations from a normally distributed population possesses a mean \bar{x} of 80 and a standard deviation s of 12. Specify a 90% confidence interval for μ . In this case what is our sampling error? What should our sample size be to estimate μ with a sampling error of 1.0 with 90% confidence? - 5. A random sample of 16 observations from a population that can be assumed to be normal has a mean \bar{x} of 10 and a standard deviation s of 2. Specify a 90% confidence interval for μ . - 6. A random sample of n = 100 observations from a population with s = 60 and $\bar{x} = 110$. Test H_0 : $\mu = 100$ against H_a : $\mu > 100$ using $\alpha = 0.05$. Find the p-value. Interpret your results. 7. A random sample of n = 20 observations from a random population with s = 60 and $\bar{x} = 110$. Test H_0 : $\mu = 100$ against H_a : $\mu > 100$ using $\alpha = 0.05$. Find the *p*-value. Interpret your results.