4.138

a.

b.

The values of \bar{x} cluster around μ more than the values of the median.

4.148

a. The mean of the sampling distribution of \bar{x} , $\mu_{\bar{x}}$, is equal to the mean of the sampled population μ = 20, and the standard deviation of the sampling distribution, $\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}} = \frac{16}{8} = 2$.

b. The sampling distribution of \bar{x} is symmetric and mound shaped. The larges the sample size the closer the distribution is to being normal.

c. The z-score corresponding to \bar{x} = 16 is z = $\frac{16-20}{2}$ = -2

d. The z-score corresponding to \bar{x} = 23 is z = $\frac{23-20}{2}$ = 1.5

e. $P(\bar{x} < 16) = 0.02275$

f. $P(\bar{x} > 23) = 0.06681$

g. $P(16 < \bar{x} < 23) = 0.91044$

Applet Exercise 4.8

a.
$$\mu_{\bar{x}} = 25.0307$$
, $M_{\bar{x}} = 25.2014$, $\sigma_{\bar{x}} = 2.5919$

- b. The mean of the sample means is approximately the same as the mean of the original distribution.
- c. $14.4338/\sqrt{30} \approx 2.6352$, and that value is fairly close to the standard deviation of the sample means.
- d. The distribution of the sample means is symmetric and mound shaped; so the distribution may be approximately normal.
- e. The results above verify the results given in the Central Limit Theorem.