In the above work we showed that $\int_0^4 (-32t + 128) dt = s(4) - s(0)$ where s(t) is a function such that s'(t) = -32t + 128. We also showed that $\int_2^4 (-32t + 128) dt = s(4) - s(2)$.

Fundamental Theorem of Calculus

Suppose f(x) is continuous on [a,b]. If F(x) is any antiderivative of f(x), that is F'(x) = f(x), then

$$\int_{a}^{b} f(x)dx = \mathbf{F}(\mathbf{b}) - \mathbf{F}(\mathbf{a})$$

For convenience we write $F(x)|_a^b = F(b) - F(a)$.

3. Evaluate:

a.
$$\int_{2}^{6} (-x^2 + 8x - 12) dx$$

b.
$$\int_0^{10} 50e^{0.05t} dt$$

4. Find the area of the region in the 1^{st} quadrant between the graph of $y = -x^2 + 8x - 12$ and the x-axis. What is the average value of the function over the interval [2, 6]?

5. The rate of sales of an item is given by $S'(t) = -3t^2 + 36t$ where t is the number of weeks after an advertising campaign has begun. How many items were sold during the third week?