| 5. | (6 points) Suppose a producer has determined that its cost function, measured in dollars, is given by $C(x) = 1000 + 10x$ where x is the number of units produced and sold. The firm's revenue function, in dollars, is given by $R(x) = 200x - \frac{1}{2}x^2$. | |----------|--| | | a. Specify the profit function $P(x)$. $P(x) = 260 \times -\frac{1}{2} \times \frac{2}{3} - 1000 - 10 \times \frac{1}{3} = 1000 - 1$ | | | b. Specify the marginal profit for any x. In marginal profit is $P(x) = 190 - X$ | | | c. Find P'(100) and interplet the result. P'(100) = 90 | | | d. What is the producer's maximum profit? How many units produced and sold yield that maximum profit? Profit is maximized when 190 are produced and sold flat flat profit is $P(190) = 1900 + $ | | | that profit is 1 (190) - 1700 | | 6. | (7 points) The population of a city is increasing at the rate given by $P'(t) = 2000e^{0.04t}$, where t is time in years from the beginning of 2000 and $P(t)$ is the population of the city t years after the beginning of 2000, $200l$, | | <u>\</u> | a. At what rate was the population growing at the beginning of 2003? P(3) = $2606e^{0.04(3)} = 2255$ people year At the beginning of 2003 the Population is growing by 2255 founds. b. Show how to use integration to help you determine the change in population from the beginning of 2000 and the beginning of 2004. | | / | beginning of 2000 and the beginning of 2004. $ \int_{0.04}^{4} \frac{0.04t}{2000} dt \approx 86.76 $ | | | The population increases by 8676 people during the period. | | | c. What was the city's population at the beginning of 2000? | | | $P(t) = 50,000 \cdot C$ So, $P(0) = 50,000$ | | | So, 7(0) - 50,000 At the beginning of 2000 the population was 50,000 |