- 1. Consider the sequence: 2, 4, 6, 8, ...
 - a. The first term is ____. We will denote this by $a_1 = 2$.
 - b. The second term is _____. We will denote this by $a_2 = \underline{\hspace{1cm}}$.
 - c. The third term is _____. We will denote this by $a_3 =$ ____.
 - d. The fourth term is the third term plus ____. We write $a_4 = a_3 +$ ___. So, $a_4 =$.
 - e. The fifth term is the fourth term plus ____. We write $a_5 = a_4 +$ ____.

So,
$$a_5 =$$
____.

- f. $a_6 = a_5 + \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$.
- g. The next term in the sequence is always the current term plus _____.
- h. The nth term is the (n-1)st term plus _____.
- i. $a_n = a_{n-1} + \underline{\hspace{1cm}}$ (This is called a difference equation.)
- j. We could have said, the current term is the previous term plus _____.
- k. The (n+1)st term is the nth term plus _____.
- 1. $a_{n+1} = a_n + \underline{\hspace{1cm}}$ (This is also a difference equation.)

This sequence can be defined by recursion via a difference equation:

$$a_1 = 2$$
 and,

$$a_n = a_{n-1} + 2$$
 for $n \ge 2$

or equivalently, by

$$a_1 = 2$$
 and,

$$a_{n+1} = a_n + 2$$
 for $n > 1$.

This sequence can also be defined explicitly by the functional equation $a_n = 2n$.

2. Consider the sequence in the following table.

n	1	2	3	4	5	6	7
$\mathbf{b_n}$	3	8	13	18	23		

- a. Complete the table.
- b. Define the sequence recursively using a difference equation.
- c. Define the sequence explicitly using a functional equation.

3. Consider the sequence in the following table.

n	0	1	2	3	4	5	6	7	8
c_n	5	7	13	23	37	55			

- a. Complete the table.
- b. Define the sequence recursively using a difference equation.
- c. Define the sequence explicitly using a functional equation.

4. Consider the sequence in the following table.

n	0	1	2	3	4	5	6	7	8
$\mathbf{d_n}$	32	40	50	62.5	78.1	97.7			

- a. Assume that the values of d_n are rounded to the nearest 0.1 and complete the table.
- b. Define the sequence recursively using a difference equation.

c. Define the sequence explicitly using a functional equation.