1. The following table records heights (inches) and corresponding shoe sizes of five fourthgrade boys. The pairs of numbers in the table are graphed as well. Draw a "line of good fit" to pass near the points in the graph, and find the equation for your line (which is called a trend line). Use your equation to predict the boys' shoe sizes when given their heights in inches, and comment on how well your line fits the data.

Height (inches)	$\mathbf{5 7}$	$\mathbf{6 2}$	$\mathbf{6 4}$	$\mathbf{6 6}$	$\mathbf{7 0}$
Shoe size	5	6	8	8	11.5
Model Predicts					
Error					

Let $\mathrm{H}=$ height (inches), and S = shoe size

My model's slope:
My models's intercept:
My model:
Sum of my errors:
My average error:
2. Suppose $P_{n}=$ the number of flies in a big jar after n days and the growth in the size of the fly population is models by the difference equation below. Of course the number of flies in the jar will always be an integer; so there will be some round-off errors.
$\mathrm{P}_{0}=100$
$P_{n} \bullet P_{n-1}+0.15 P_{n-1}$ for $n \geq 1$.

Complete the table and graph.

\mathbf{n}	$\mathbf{P}_{\mathbf{n}}$	$\ddot{\mathbf{A}} \mathbf{P}_{\mathbf{n}}$	\% Change
$\mathbf{0}$			
$\mathbf{1}$			
2			
3			
4			
5			
6			

Write a functional equation for $\mathbf{P}_{\mathbf{n}}$:
3. Consider the relationship between B_{n} and n shown in the table below. Complete the table and specify a rule for the relatoionship using a difference equation and a functional equation.

Än	\mathbf{n}	$\mathbf{B}_{\mathbf{n}}$	$\ddot{\mathbf{A}} \mathbf{B}_{\mathbf{n}}$	Ä $\left(\ddot{\mathbf{A}} \mathbf{B}_{\mathbf{n}}\right)$
	$\mathbf{1}$	3		
	2	10		
	3	21		
	4	36		
	5	55		
	6	78		
	7			

