Difference Equations & Functional Equations

1. Consider the sequence: 3, 8, 13, 18, ...

- a. The first term is _____. We will denote this by $a_1 = 3$.
- b. The second term is ____. We will denote this by $a_2 =$ ___.
- c. The third term is _____. We will denote this by $a_3 = \underline{\hspace{1cm}}$.
- d. The fourth term is the third term plus ____. We write $a_4 = a_3 +$ ___. So, $a_4 =$.
- e. The fifth term is the fourth term plus ____. We write $a_5 = a_4 +$ ___. So, $a_5 =$ ___.
- f. $a_6 = a_5 + \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$.
- g. The next term in the sequence is always the previous term plus _____.
- k. The n^{th} term is the $(n-1)^{st}$ term plus _____.
- 1. $a_n = a_{n-1} + \underline{\hspace{1cm}}$. (This is called a difference equation.)

This sequence can be defined by recursion via a difference equation:

$$a_1 = 3$$
 and,
 $a_n = a_{n-1} + 5$ for $n \ge 1$.

This sequence can also be defined explicitly by the functional equation

$$a_n = 5n - 2$$
.

2. Consider the sequence in the following table.

n	1	2	3	4	5	6	7
$\mathbf{b_n}$	5	9	13	17	21		

- a. Complete the table.
- b. Is this an arithmetic sequence? Why or why not?
- c. Define the sequence recursively using a difference equation.
- d. Define the sequence explicitly using a functional equation.

3. Consider the sequence in the following table. Here we start with n = 0.

n	0	1	2	3	4	5	6
$\mathbf{c}_{\mathbf{n}}$	32	40	50	62.5			

1st differences:

n	0	1	2	3	4	5	6
c _n	32	40	50	62.5			

Ratio $\frac{C_n}{C_{n-1}}$:

- a. Complete the table.
- b. Is this an arithmetic sequence? (Why or why not?)
- c. A sequence in which each successive term is obtained by multiplying the previous term by a fixed number is called a *geometric sequence*. The fixed number is called the *common ratio*. Is the sequence of this example a geometric sequence? If so what is its common ratio?
- d. Define this sequence recursively using a difference equation.
- e. Define this sequence explicitly using a functional equation.
- 4. Consider the sequence in the following table.

n	0	1	2	3	4	5	6	7	8
$\mathbf{d_n}$	4	9	20	37	60	89			

1st differences:

2nd differences:

- a. Complete the table.
- b. Define the sequence recursively using a difference equation.
- c. Later we will define the sequence explicitly using a functional equation.