Comparing Two Temperature Scales

Introduction

Temperature is measured in degrees. There are two common temperature scales, the Fahrenheit scale (${ }^{\circ} \mathrm{F}$) and the Celsius scale $\left({ }^{\circ} \mathrm{C}\right)$. Perhaps you recall that the freezing point of water is $32^{\circ} \mathrm{F}$ and $0^{\circ} \mathrm{C}$ and the boiling point of water (at sea level) is $212^{\circ} \mathrm{F}$ and $100^{\circ} \mathrm{C}$.

Personal Predictions

There is a relationship between the two temperature scales. That is, there are functional models relating temperatures in ${ }^{\circ} \mathrm{F}$ and temperatures in ${ }^{\circ} \mathrm{C}$. Draw a sketch indicating your guess concerning the shape of the graph of a function relating ${ }^{\circ} \mathrm{F}$ and ${ }^{\circ} \mathrm{C}$.

Develop a table relating values on the two temperature scales.

Degrees	Degrees
Celsius	Fahrenheit
	-13
water freezes	
	122

Group Predictions

Discuss within your working group individual predictions concerning a rule for relating the two temperature scales, and write a final version representing the group's prediction for that rule. Define the meaning of any symbols you introduce.

What is the average rate of change in temperature in ${ }^{\circ} \mathrm{F}$ with respect to temperature in ${ }^{\circ} \mathrm{C}$ between the temperatures where water freezes and where water boils?

What is the average rate of change in ${ }^{\circ} \mathrm{C}$ with respect to ${ }^{\circ} \mathrm{F}$ between the temperatures where water freezes and where water boils?

Graph the relationship between the two temperature scales. Label the axes and place an appropriate title on the graph.

Write a formula we can use to convert Celsius temperatures to corresponding Fahrenheit temperatures.

