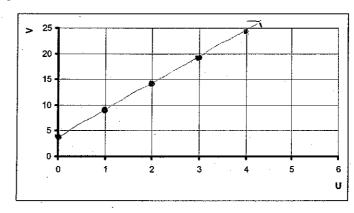
U	٧
0	4
1	9
2	14
3	19
4	24



- a. Plot the data points using the grid provided above.
- b. Use the space below to explain and show how to determine a functional equation for the relationship between the values of V and U.

The equation is V=5u+4 because the common difference is 5 for V and I for u and the slope is $\frac{4V}{4U}$, which equals $\frac{5}{4}$ or 5. Then the V-intercept is the value for V when u is zero, which is 4 in our chart

c. Show how to use your functional equation to find the value of V when
$$U = 10$$
. So size Equation is $V = 5u + 4$

d. Show how to use your functional equation to find the value of U when V = 89.

$$V=5u+4$$
 U is 17 when $S=5u+4$ V is 89.

2. (8 points) Consider the relationship expressed in the table below. Assume the observed pattern of differences continues indefinitely.

n	0	1	2	3 .	4	5	6	7
C_n	4	7	14	25	40	59	82	109
		<u> </u>	' ' ' '	()	/ 5	19 >	, i	7
		3 ×	<u> </u>	\checkmark	<i>\sqrt{\cdot}</i>	V	` `	₹
		4	4	4	4	Ц	ŭ.	

- a. Complete the table by entering the values for C₀, C₆, and C₇.
- b. Complete the following rule that specifies a difference equation for the relationship.

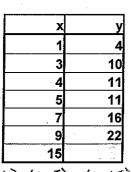
$$C_0 = \underline{L}$$

$$C_n = C_{n-1} + \underline{(u_{11} - 1)}$$

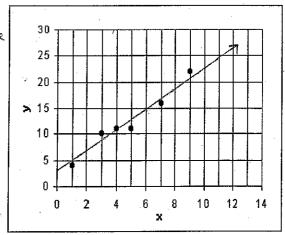
c. Complete the following rule to specify an explicit functional equation for this relationship.

$$C_n = 2n^2 + n + 4$$

- (10 points) Plot the data below on the grid provided for that purpose. Sketch a line that you think provides a good fit to the data.
 - a. Explain why you drew the line where you did.
 - Show how to find an equation for the line you drew. Write out that equation.
 - Show how to use your equation to estimate a predicted value for y when x = 15.
 - d. Use a numerical criterion in commenting on how well you think your line fits the data (average error.)



a) I drew the line where I did because 10 I was trying to 11 get my line close 11 to as many data 16 points as possible.

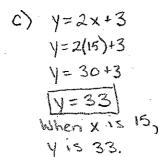


b) (1,5) (6,15)

$$m = \frac{15-5}{6-1} = \frac{10}{5} = 2$$

$$y = mx + b$$

 $5 = 2(1) + b$
 $6 = 2 + b$
 $b = 3$



cl)	χ\	Y	2× +31	Error	
~ <i>)</i>	1	U	5	1	AVA
	3	10	19	1	error:
	4	111	111	O	. "
	5	11	13	2_	
	7	16	1-7	1	-
	a	722	21	1	
	£	1 ~ ds	now av	eranc	error

(8 points) Suppose \$1000 is placed in an account that pays interest at the rate of 8% per annum compounded at the end of each year. Once the money is deposited, it is left to grow with no further the data. deposits or withdrawals.

Let A_0 = the value of the initial deposit, and let A_n = the value of the account at the end of n years.

Show how to calculate A_1 and A_2 .

$$A_1 = 1000 \pm 1000(.08)$$
 $A_2 = 1080 \pm 1080(.08)$
 $A_1 = 11080$ $A_2 = 11166.40$

b. Write a difference equation for the relationship between A_n and n.

$$A_0 = 1000$$
 $A_0 = 1.08 (A_{n-1})$

Write an explicit functional equation for the relationship between A_n and n.

Show how to determine the number of years it will take for the value of the account to reach or exceed \$1500. An=1000x(1.08)

It will take 6 years for the value of the account to reach or exceed \$ 1500.

b)
$$C(x) = 5x + 30$$

 $C(x) = 5(15) + 30$
 $C(x) = 105$

It will cost \$105 to play 15 hours c(x)=5(15)+30 of racquetbail in a given month.

c)
$$C(x)=5x+30$$

 $75=5x+30$
 $45=5x$
 $x=9$

If Tom was charged \$75 for playing 75=5x+30 racquetball during the month of 45=5x October, then he played 9 houx=9 October, then he played 9 hours of racquetball.

6. (8 points) We have already investigated the relationship between the Fahrenheit and Celsius temperature scales. We have seen that when the Fahrenheit temperature increases by 9 degrees the Celsius temperature increases by 5 degrees. Of course, we know that water freezes at 0° Celsius and at 32° Fahrenheit.

a. Let C = degrees Celsius and F = degrees Fahrenheit. Complete the functional equation we can use to convert from degrees Celsius to degrees Fahrenheit. Show your work in deriving the equation.

$$F = \frac{{}^{2}C + 32}{5}$$

$$M = \frac{{}^{2}E}{32} = \frac{{}^{2}C + b}{32}$$

$$b = 32$$

Use your equation from part (a.) to determine the following:

$$F = \frac{9}{5}C + 32$$

$$F = \frac{9}{5}(50) + 32$$

$$F = 122^{\circ}$$

$$F = 122^{\circ}$$

$$F = \frac{9}{5}(50) + 32$$

$$F = \frac{9}{5}C + 32$$

$$F = \frac{9}{5}C + 32$$

$$-40^{\circ} \text{ Fahrenheit} = \frac{9}{5}C + 32$$

$$-40 = \frac{9}{5}C + 32$$

$$-72 = \frac{9}{5}C$$

$$C = -40$$