Sketch the image of $\triangle \mathrm{ABC}$ under a reflection in line \mathbf{j}.

Sketch the image of $\triangle \mathrm{ABC}$ under a rotation of $180^{\mathbf{0}}$ about point C.

Sketch the image of $\triangle \mathrm{ABC}$ under a translation defined by the slide vector EF .

Representing Isometries with Matrices
Reflections in the x - or y-axis:
Sketch the image of $\triangle \mathrm{ABC}$ under a reflection in the y-axis. Label the image $\Delta A^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}$. Next, sketch the image of $\triangle A B C$ under a reflection in the x-axis. Label that image $\Delta A{ }^{\prime}{ }^{\prime} B^{\prime \prime} C^{\prime \prime}$.

Consider an arbitrary point $\mathbf{P}=\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]$ in the Euclidean plane. The image of \mathbf{P} under a reflection in the \mathbf{y}-axis is \mathbf{P}^{\prime} where \mathbf{P}^{\prime} has coordinates $\mathbf{P}^{\prime}=$

The image of P under a reflection in the x-axis is $P "$ where $P "$ has coordinates $P "=$
Using matrix notation.
$\mathbf{P}^{\prime}=\mathbf{T}_{\mathbf{1}} \mathbf{P}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]$ and $\mathbf{P} \boldsymbol{\prime}=\mathbf{T}_{\mathbf{2}} \mathbf{P}=\left[\begin{array}{ccc}-1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]$.
Translations by shifting x-coordinates e units and y-coordinates f units:
Consider an arbitrary point $P=\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]$ in the Euclidean plane. The image of P under a translation shifting x-coordinates e units and y-coordinates f units is P^{\prime} where P^{\prime}
has coordinates $\mathbf{P}^{\prime}=\left[\begin{array}{c}x+e \\ y+f \\ 1\end{array}\right]$.
Using matrix notation.
$\mathbf{P}^{\prime}=\mathbf{T}_{\mathbf{3}} \mathbf{P}=\left[\begin{array}{lll}1 & 0 & e \\ 0 & 1 & f \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]$.
Sketch the image of $\triangle \mathrm{ABC}$ under a translation through a horizontal shift of 4 and a vertical shift of 2 .

