MATH 406 Session 25 Some Isometries of the Plane

Sketch the image of $\triangle ABC$ under a reflection in line j.

Sketch the image of $\triangle ABC$ under a rotation of 180^{0} about point C.

Sketch the image of \triangle ABC under a translation defined by the slide vector EF.

Representing Isometries with Matrices

Reflections in the x- or y-axis:

Sketch the image of $\triangle ABC$ under a reflection in the y-axis. Label the image $\triangle A'B'C'$. Next, sketch the image of $\triangle ABC$ under a reflection in the x-axis. Label that image $\triangle A''B''C''$.

Consider an arbitrary point $P = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$ in the Euclidean plane. The image of P under a reflection

in the y-axis is P' where P' has coordinates P' =

The image of P under a reflection in the x-axis is P" where P" has coordinates P" =

Using matrix notation.

$$\mathbf{P'} = \mathbf{T_1P} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \text{ and } \mathbf{P''} = \mathbf{T_2P} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}.$$

Translations by shifting x-coordinates e units and y-coordinates f units:

Consider an arbitrary point $P = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$ in the Euclidean plane. The image of P under a translation

shifting x-coordinates e units and y-coordinates f units is P' where P'

has coordinates P' =
$$\begin{bmatrix} x+e \\ y+f \\ 1 \end{bmatrix}$$
.

Using matrix notation.

$$\mathbf{P'} = \mathbf{T_3P} = \begin{bmatrix} 1 & 0 & e \\ 0 & 1 & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}.$$

Sketch the image of ΔABC under a translation through a horizontal shift of 4 and a vertical shift of 2.

