SU DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE SYLLABUS (Tentative) MATH 406/516 Geometric Structures

Objectives:	This course focuses on Euclidean and Non-Euclidean geometry with an emphasis on students' abilities to construct proofs and communicate mathematics verbally. Two further goals of the class are to have the students develop self-reliance in the study of geometry and develop an appreciation for the role of geometry in history and culture.		
Intended Audience:	This course is intended for prospective mathematics teachers and mathematics majors		
Prerequisites:	MATH 210 and some experience writing proofs.		
Text:	"Modern Geometry," by David A. Thomas; Brooks/Cole, 2002.		
Software:	"Geometer's Sketchpad"& CD accompanying text are bundled with the text.		

Topics	Weeks
<i>Geometry Through the Ages</i> Greek Geometry, Euclid, Neutral Geometry, Famous Problems	1-2
<i>Topics in Euclidean Geometry</i> Constructions, Axiom Systems, Formal Geometric Proof	2-3
<i>Other Geometries</i> Parallelism, Hyperbolic Space	2-3
<i>Transformational Geometry</i> Analytic Model of the Euclidean Plane, Linear Transformations of the Plane	2-3
<i>Projective Geometry</i> Perspective and Projective Geometry, The Cross Ratio	2
<i>Tests and Optional Topics</i> Fractal Geometry, Other Geometries	1-3

EVALUATION

Projects, Presentations, Homework	40% - 50%
Tests (2 or 3) and Final Exam	60% - 50%

Graduate students will be assigned special homework/test problems or projects.

NOTE: Once a student has received credit, including transfer credit, for a course, credit may not be received for any course with material that is equivalent to it or is a prerequisite for it.

DCC/lsa