MATH 406 Session \#23 Section 4.1 An Analytic Model of E ${ }^{2}$

We are used to representing points in E^{2} by ordered pairs of real numbers (x, y) and lines by equations of the form $a x+b y+c=0$. For the purposes of our work in the next chapters, we will associate points with ordered triples of the form ($\mathrm{x}, \mathrm{y}, 1$). The two representations (x, y) and ($\mathrm{x}, \mathrm{y}, 1$) of the points in E^{2} are called nonhomogeneous and homogeneous coordinates respectively.

In this course, we will frequently denote points with column vectors $\quad\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]$.
If a, b, and c are real numbers with at least one of them nonzero, then the set of all points $(\mathrm{x}, \mathrm{y}, 1)$ such that $\mathrm{ax}+\mathrm{by}+\mathrm{c}=0$ is a line. We will identify lines by row vectors $\left[\begin{array}{lll}a & b & c\end{array}\right]$.

The matrix equation $\left[\begin{array}{lll}a & b & c\end{array}\right]\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]=0$ is an abbreviation for $\mathrm{ax}+\mathrm{by}+\mathrm{c} \cdot 1=0$.

Area of a Triangle with Known Vertices

In Class Session \#3 we developed the following theorem.
Theorem 4.1.1 Given three noncollinear points in the plane $\mathrm{A}\left(\mathrm{x}_{1}, \mathrm{y}_{1}, 1\right), \mathrm{B}\left(\mathrm{x}_{2}, \mathrm{y}_{2}, 1\right)$, $\mathrm{C}\left(\mathrm{x}_{3}, \mathrm{y}_{3}, 1\right)$, the area of the triangle determined by the three points is given by

$$
\mathrm{A}=\left(\frac{1}{2}\right) a b s\left(\left|\begin{array}{ccc}
x_{1} & x_{2} & x_{3} \\
y_{1} & y_{2} & y_{3} \\
1 & 1 & 1
\end{array}\right|\right)
$$

Recall how we evaluate determinants.
$\left|a_{11}\right|=a_{11} . \quad\left|\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right|=a_{11} a_{22}-a_{21} a_{12}$.
$\left|\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right|=a_{11}\left|\begin{array}{ll}a_{22} & a_{23} \\ a_{32} & a_{33}\end{array}\right|-a_{12}\left|\begin{array}{ll}a_{12} & a_{13} \\ a_{32} & a_{33}\end{array}\right|+a_{31}\left|\begin{array}{ll}a_{12} & a_{13} \\ a_{22} & a_{23}\end{array}\right|$
There are other ways to evaluate determinants.

The Equation of a Line

If the points $\mathrm{A}\left(\mathrm{x}_{1}, \mathrm{y}_{1}, 1\right), \mathrm{B}\left(\mathrm{x}_{2}, \mathrm{y}_{2}, 1\right), \mathrm{C}\left(\mathrm{x}_{3}, \mathrm{y}_{3}, 1\right)$ are collinear and we tried to employ Theorem 4.1.1, what would we obtain for our area?

Suppose $\left[\begin{array}{c}x_{1} \\ y_{1} \\ 1\end{array}\right]$ and $\left[\begin{array}{c}x_{2} \\ y_{2} \\ 1\end{array}\right]$ are two given fixed points in the plane and $\left[\begin{array}{c}x \\ y \\ 1\end{array}\right]$ is any other
point in the plane. The third (arbitrary) point is on the line through the first two (fixed) points if and only if

$$
\left|\begin{array}{ccc}
x & x_{1} & x_{2} \\
y & y_{1} & y_{2} \\
1 & 1 & 1
\end{array}\right|=0 .
$$

We find the equation of the line through $\left[\begin{array}{l}1 \\ 5 \\ 1\end{array}\right]$ and $\left[\begin{array}{l}3 \\ 9 \\ 1\end{array}\right]$.
$\left|\begin{array}{lll}x & 1 & 3 \\ y & 5 & 9 \\ 1 & 1 & 1\end{array}\right|=0 . \quad-4 \mathrm{x}+2 \mathrm{y}-6=0 \quad$ or $\quad\left[\begin{array}{lll}2 & -1 & 3\end{array}\right]\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]=0$.

Intersection of Two lines

Given two lines l_{1} and l_{2} with equations
$\left[\begin{array}{lll}a_{1} & b_{1} & c_{1}\end{array}\right]\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]=0$ and $\left[\begin{array}{lll}a_{2} & b_{2} & c_{2}\end{array}\right]\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]=0$ respectively. Find their point of intersection if it exists.
If $a_{1} b_{2}-a_{2} b_{1} \neq 0$ then l_{1} and l_{2} intersect at the point $\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]$ where
$x=\frac{\left|\begin{array}{ll}b_{1} & c_{1} \\ b_{2} & c_{2}\end{array}\right|}{\left|\begin{array}{ll}a_{1} & b_{1} \\ a_{2} & b_{2}\end{array}\right|}$ and $y=\frac{\left|\begin{array}{ll}c_{1} & a_{1} \\ c_{2} & a_{2}\end{array}\right|}{\left|\begin{array}{ll}a_{1} & b_{1} \\ a_{2} & b_{2}\end{array}\right|}$. (Look up Cramer's Rule.)

