a. $T=\left[\begin{array}{ccc}\frac{-1}{2} & \frac{-\sqrt{3}}{2} & \sqrt{3} \\ \frac{-\sqrt{3}}{2} & \frac{1}{2} & 1 \\ 0 & 0 & 1\end{array}\right]$
b. We seek \bar{u} such that $T(\bar{u})=\left[\begin{array}{ccc}\frac{-1}{2} & \frac{-\sqrt{3}}{2} & \sqrt{3} \\ \frac{-\sqrt{3}}{2} & \frac{1}{2} & 1 \\ 0 & 0 & 1\end{array}\right] \bar{u}$. All $\bar{u}=\left[\begin{array}{c}\frac{2-t}{\sqrt{3}} \\ t \\ 1\end{array}\right]$ for $t \in R$ are invariant.
c. We seek $\left[\begin{array}{lll}a & b & c\end{array}\right]$ such that $\left[\begin{array}{lll}a & b & c\end{array}\right]\left[\begin{array}{ccc}\frac{-1}{2} & \frac{-\sqrt{3}}{2} & \sqrt{3} \\ \frac{-\sqrt{3}}{2} & \frac{1}{2} & 1 \\ 0 & 0 & 1\end{array}\right]^{-1}=k\left[\begin{array}{lll}a & b & c\end{array}\right]$

The lines $\left[\begin{array}{lll}1 & -\sqrt{3} & c\end{array}\right]\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]=0$ are invariant under T. By part (b), the line $\left[\begin{array}{lll}1 & \frac{1}{\sqrt{3}} & \frac{-2}{\sqrt{3}}\end{array}\right]$ is also invariant.

b. T is composed of the following transformations:

Rotate 210° about the origin
Reflect in the line $\mathrm{y}=\mathrm{x}$
Translate through $(\sqrt{3}, 1)$
$T=\left[\begin{array}{ccc}0 & 0 & \sqrt{3} \\ 0 & 0 & 1 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{ccc}\frac{-\sqrt{3}}{2} & \frac{1}{2} & 0 \\ \frac{-1}{2} & \frac{-\sqrt{3}}{2} & 0 \\ 0 & 0 & 1\end{array}\right]$

