MATH 406 Geometric Structures

Study Guide for Test \#2

Material Covered on Test \#1 that You Should Know

Bring a scientific calculator and compass and straight-edge to the test session.
1.2.1 Given the axioms for a finite geometry, like Systems $1,2,3, \& 5$, show that axioms are (a) consistent, (b) independent. (Fig. 1.2.3; Exercises 1.2: 5)
1.3.1 Do the incidence axioms (axioms of connection) comprise a complete deductive system? (Justify your answer.)
3.1.1 Write five statements that are logically equivalent to Euclid's fifth postulate.
3.1.2 State the five axioms that characterize hyperbolic geometry.
3.1.3 Prove: If Playfair's axiom is true, then the sum of the angle measures of any triangle is equal to the sum of the measures of two right angles.
3.2.1 Define: circular inversion
3.2.2 Given a point A inside a circle C of specified radius r , show how to construct the image of A under the inversion of the punctured plane in the circle C.
3.2.3 Given two points in the interior of a circle C , show how to construct a circle C^{\prime} that passes through the two given points and is orthogonal to C .
3.2.4 Calculate hyperbolic distances given the relevant Euclidean distances.
3.2.5 Respond to questions like those in the investigation titled "Introduction to NonEuclid" on pages 116-117. The test will include some related true-false items and Some short answer items.
3.2.6 Prove: Theorem 3.2.3.

