Every translation can be expressed as the composition of two reflections where the reflections are in parallel lines; every rotation can be expressed as the composition of reflections where the reflections are in concurrent lines.

Every isometry can be expressed as the composition of at most three reflections.

A one-to-one transformation $T: \mathrm{E}^{2} \xrightarrow{\text { ono }} \mathrm{E}^{2}$ is a dilation with center O with nonzero ratio $r$ iff $T(O)=O$ and for each $P, Q \in E^{2}$, $\mathbf{d}(T(\mathbf{P}), T(\mathbf{Q}))=\operatorname{rd}(\mathbf{P}, \mathbf{Q})$.

A one-to-one transformation $T: \mathrm{E}^{2} \xrightarrow{\text { onto }} \mathrm{E}^{2}$ is a shear if all points P on a given line $L$ are invariant while all other points are shifted parallel to $L$ by a distance proportional to their perpendicular distance from $L$.

An affine transformation is any transformation that preserves collinearity (i.e., all points lying on a line initially still lie on a line after transformation) and ratios of distances (e.g., the midpoint of a line segment remains the midpoint after transformation). An affine transformation is also called an affinity. Affine transformations also preserve parallelism.

In general, an affine transformation is a composition of rotations, translations, dilations, and shears.

The general matrix for affine transformations is

$$
T=\left[\begin{array}{lll}
a & b & e \\
c & d & f \\
0 & 0 & 1
\end{array}\right]
$$

A glide reflection is the composition of a reflection and a translation in a direction parallel to the line of reflection.

A one-to-one transformation $T: \mathrm{E}^{2} \xrightarrow{\text { ont }} \mathrm{E}^{2}$ is a similitude with nonzero ratio $r$ iff for each $P, Q \in E^{2}, d(T(P), T(Q))=\operatorname{rd}(P, Q)$.

If a transformation preserves perpendicularity it is called an orthomap.

## Some Matrix Representations

Orthomap: $\quad\left[\begin{array}{ccc}a & -\delta b & 0 \\ b & \delta a & 0 \\ 0 & 0 & 1\end{array}\right], \delta= \pm 1$.
Similitude: $\quad\left[\begin{array}{ccc}a & -\delta b & e \\ b & \delta a & f \\ 0 & 0 & 1\end{array}\right],(\delta= \pm 1)$.
Dilation with center $\mathbf{O}(\mathbf{h}, \mathbf{k})$ and ratio $\mathbf{r}$ : $\left[\begin{array}{lll}r & 0 & e \\ 0 & r & f \\ 0 & 0 & 1\end{array}\right]$, where $e=h$-rh and

$$
f=k-a k .
$$

Isomerty: $\quad\left[\begin{array}{ccc}a & -\delta b & e \\ b & \delta a & f \\ 0 & 0 & 1\end{array}\right],(\delta= \pm 1)$ and $a^{2}+b^{2}=1$.

Rotation about $\mathbf{O}(\mathbf{0}, \mathbf{0})$ : $\left[\begin{array}{ccc}\cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right]$

Reflection in Line $(\mathbf{a x}+\mathbf{b y}=\mathbf{c})$ : $\quad \frac{1}{a^{2}+b^{2}}\left[\begin{array}{ccc}b^{2}-a^{2} & -2 a b & 2 a c \\ -2 a b & a^{2}-b^{2} & 2 b c \\ 0 & 0 & 1\end{array}\right]$.

Strain with ratio $\mathbf{r}$ and axis $\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]$ : $\quad\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & r & 0 \\ 0 & 0 & 1\end{array}\right]$.
Shear with axis $\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]$ and ratio r: $\quad\left[\begin{array}{lll}1 & r & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$.

