MATH 406 Sample Exercises

Example 1:

Suppose
$$T_{1} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 4 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
.
If $T_{3} = T_{2} \circ T_{1}$, then $T_{3} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 4 \\ 1 & 0 & 3 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$.
Are any points invariant under T_{3} ?
Are there any points such that $T_{3} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ x + 0y + 3 = y \\ 0x + 0y + 1 = 1 \end{bmatrix}$.
(1) is equivalent to (2) $\begin{array}{c} -1x + 1y = -4 \\ 1x - 1y = -3 \end{array}$. (2) is equivalent to (3) $\begin{array}{c} -1x + 1y = -4 \\ 0x + 0y = -7 \end{array}$.

System (3) is inconsistent. So, there can be no invariant points under T_3 .

Are any lines invariant under T_3 ?

Method 1:

We note that $T_3^{-1} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = \begin{bmatrix} 0 & 1 & -3 \\ 1 & 0 & -4 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}.$

Suppose
$$\begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 4 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix}$$
. It follows that $\begin{bmatrix} 0 & 1 & -3 \\ 1 & 0 & -4 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$. That is $\begin{array}{c} x = y' - 3 \\ y = x' - 4 \end{array}$.

The image of the line Ax + By + C = 0 under T_3 becomes A(y'-3) + B(x'-4) + C = 0. After simplification we see that the image of Ax + By + C = 0 becomes Bx' + Ay' + (C - 3A - 4B) = 0. So, the line Ax + By + C = 0 is invariant iff A = B and 3A + 4B = 0. That last condition implies that each of A, B, C must be zero. But we cannot have each of A, B, C zero and have an equation for a line, so there can be no invariant lines under T_3 .

Method 2: In this method we appeal to Theorem 4.2.4 and seek $\begin{bmatrix} u_1 & u_2 & u_3 \end{bmatrix}$ such that

(4)
$$\begin{bmatrix} u_1 & u_2 & u_3 \end{bmatrix} \begin{bmatrix} 0 & 1 & -3 \\ 1 & 0 & -4 \\ 0 & 0 & 1 \end{bmatrix} = k \begin{bmatrix} u_1 & u_2 & u_3 \end{bmatrix}$$
 for any $k \in \mathbb{R}$.
(4) is equivalent to $\begin{bmatrix} u_2 & u_1 & -3u_1 - 4u_2 + u_3 \end{bmatrix} = k \begin{bmatrix} u_1 & u_2 & u_3 \end{bmatrix}$.

Setting k = 1 we obtain $u_1 = u_2$ and $-3u_1 = 4u_2$. So, $u_1 = u_2 = 0$ and $\begin{bmatrix} u_1 & u_2 & u_3 \end{bmatrix}$ cannot represent a line. Hence, there are no invariant lines under T_3 .

Example 2:

Find all invariant lines under *T* defined by $T\begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = \begin{bmatrix} \frac{2-\sqrt{5}}{2} & \frac{5}{2} & 0 \\ -\frac{1}{2} & \frac{2+\sqrt{3}}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix}.$ Note the matrix for T^{T} is $\begin{bmatrix} \frac{2+\sqrt{3}}{2} & -\frac{3}{2} & 0 \\ \frac{1}{2} & \frac{2-\sqrt{3}}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix}.$ Thus, $\begin{bmatrix} \frac{2+\sqrt{3}}{2} & -\frac{3}{2} & 0 \\ \frac{1}{2} & \frac{2-\sqrt{3}}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y' \\ 1 \end{bmatrix}$

So
$$\begin{bmatrix} \frac{2+\sqrt{3}}{2}x'-\frac{3}{2}y'\\ \frac{1}{2}x'+\frac{2-\sqrt{3}}{2}y'\\ 1 \end{bmatrix} = \begin{bmatrix} x\\ y\\ 1 \end{bmatrix}$$
. Therefore, the image of the line *l*: Ax + By + C = 0 is
given by $A(\frac{2+\sqrt{3}}{2}x'-\frac{3}{2}y') + B(\frac{1}{2}x'+\frac{2-\sqrt{3}}{2}y') + C = 0$. Or, after simplification, by
 $(\frac{2+\sqrt{3}}{2}A+\frac{1}{2}B)x'+(-\frac{3}{2}A+\frac{2-\sqrt{3}}{2}B)y'+C = 0$. The line *l* will be invariant iff $\frac{\sqrt{3}}{2}A+\frac{1}{2}B = 0$ and
 $-\frac{3}{2}A-\frac{\sqrt{3}}{2}B = 0$. That is line *l* will be invariant iff $A = -\frac{\sqrt{3}}{3}B$. So, lines of the form
 $\left[-\sqrt{3} \quad 3 \quad c\right] \begin{bmatrix} x\\ y\\ 1 \end{bmatrix} = 0$ for any $c \in \mathbb{R}$ are invariant under *T*. So, all lines with slope $\frac{\sqrt{3}}{3}$ are invariant under *T*.

(See Example 4.6.5 in the textbook.)