Example 1:

Suppose $T_{1}\left(\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]\right)=\left[\begin{array}{lll}1 & 0 & 3 \\ 0 & 1 & 4 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]$ and $T_{2}\left(\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]\right)=\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]$.

If $T_{3}=T_{2} \circ T_{1}$, then $T_{3}\left(\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]\right)=\left[\begin{array}{lll}0 & 1 & 4 \\ 1 & 0 & 3 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{c}x \\ y \\ 1\end{array}\right]$.
Are any points invariant under \boldsymbol{T}_{3} ?
Are there any points such that $T_{3}\left(\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]\right)=\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]$?
$T_{3}\left(\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]\right)=\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]$ iff $(1)\left\{\begin{array}{l}{\left[\begin{array}{l}0 x+1 y+4=x \\ 1 x+0 y+3=y \\ 0 x+0 y+1=1\end{array} .\right.}\end{array}\right.$

(1) is equivalent to (2) $\begin{aligned} & -1 x+1 y=-4 \\ & 1 x+-1 y=-3\end{aligned} . \quad$ (2) is equivalent to (3) $\begin{aligned} & -1 x+1 y=-4 \\ & 0 x+0 y=-7\end{aligned}$.

System (3) is inconsistent. So, there can be no invariant points under T_{3}.

Are any lines invariant under \boldsymbol{T}_{3} ?

Method 1:

We note that $T_{3}^{-1}\left(\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]\right)=\left[\begin{array}{ccc}0 & 1 & -3 \\ 1 & 0 & -4 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]$.
Suppose $\left[\begin{array}{lll}1 & 0 & 3 \\ 0 & 1 & 4 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]=\left[\begin{array}{c}x^{\prime} \\ y^{\prime} \\ 1\end{array}\right]$. It follows that $\left[\begin{array}{ccc}0 & 1 & -3 \\ 1 & 0 & -4 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{c}x^{\prime} \\ y^{\prime} \\ 1\end{array}\right]=\left[\begin{array}{c}x \\ y \\ 1\end{array}\right]$. That is $\begin{aligned} & x=y^{\prime}-3 \\ & y=x^{\prime}-4\end{aligned}$.
The image of the line $\mathrm{Ax}+\mathrm{By}+\mathrm{C}=0$ under T_{3} becomes $\mathrm{A}\left(\mathrm{y}^{\prime}-3\right)+\mathrm{B}\left(\mathrm{x}^{\prime}-4\right)+\mathrm{C}=0$. After simplification we see that the image of $A x+B y+C=0$ becomes $B x^{\prime}+A y^{\prime}+(C-3 A-4 B)=0$. So, the line $A x+B y+C=0$ is invariant iff $\mathrm{A}=\mathrm{B}$ and $3 \mathrm{~A}+4 \mathrm{~B}=0$. That last condition implies that each of $\mathrm{A}, \mathrm{B}, \mathrm{C}$ must be zero. But we cannot have each of $\mathrm{A}, \mathrm{B}, \mathrm{C}$ zero and have an equation for a line, so there can be no invariant lines under T_{3}.

Method 2: In this method we appeal to Theorem 4.2.4 and seek $\left[\begin{array}{lll}u_{1} & u_{2} & u_{3}\end{array}\right]$ such that
(4) $\quad\left[\begin{array}{lll}u_{1} & u_{2} & u_{3}\end{array}\right]\left[\begin{array}{ccc}0 & 1 & -3 \\ 1 & 0 & -4 \\ 0 & 0 & 1\end{array}\right]=k\left[\begin{array}{lll}u_{1} & u_{2} & u_{3}\end{array}\right]$ for any $\mathrm{k} \in \mathrm{R}$.
(4) is equivalent to $\left[\begin{array}{lll}u_{2} & u_{1} & -3 u_{1}-4 u_{2}+u_{3}\end{array}\right]=k\left[\begin{array}{lll}u_{1} & u_{2} & u_{3}\end{array}\right]$.

Setting $\mathrm{k}=1$ we obtain $u_{1}=u_{2}$ and $-3 u_{1}=4 u_{2}$. So, $u_{1}=u_{2}=0$ and $\left[\begin{array}{lll}u_{1} & u_{2} & u_{3}\end{array}\right]$ cannot represent a line. Hence, there are no invariant lines under T_{3}.

Example 2:

Find all invariant lines under T defined by $T\left(\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]\right)=\left[\begin{array}{ccc}\frac{2-\sqrt{3}}{2} & \frac{3}{2} & 0 \\ -\frac{1}{2} & \frac{2+\sqrt{3}}{2} & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]=\left[\begin{array}{c}x^{\prime} \\ y^{\prime} \\ 1\end{array}\right]$.
Note the matrix for T^{l} is $\left[\begin{array}{ccc}\frac{2+\sqrt{3}}{2} & -\frac{3}{2} & 0 \\ \frac{1}{2} & \frac{2-\sqrt{3}}{2} & 0 \\ 0 & 0 & 1\end{array}\right]$. Thus, $\left[\begin{array}{ccc}\frac{2+\sqrt{3}}{2} & -\frac{3}{2} & 0 \\ \frac{1}{2} & \frac{2-\sqrt{3}}{2} & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}x^{\prime} \\ y^{\prime} \\ 1\end{array}\right]=\left[\begin{array}{c}x \\ y \\ 1\end{array}\right]$.
So $\left[\begin{array}{c}\frac{2+\sqrt{3}}{2} x^{\prime}-\frac{3}{2} y^{\prime} \\ \frac{1}{2} x^{\prime}+\frac{2-\sqrt{3}}{2} y^{\prime} \\ 1\end{array}\right]=\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]$. Therefore, the image of the line l : $\mathrm{Ax}+\mathrm{By}+\mathrm{C}=0$ is
given by $A\left(\frac{2+\sqrt{3}}{2} x^{\prime}-\frac{3}{2} y^{\prime}\right)+B\left(\frac{1}{2} x^{\prime}+\frac{2-\sqrt{3}}{2} y^{\prime}\right)+C=0$. Or, after simplification, by $\left(\frac{2+\sqrt{3}}{2} A+\frac{1}{2} B\right) x^{\prime}+\left(-\frac{3}{2} A+\frac{2-\sqrt{3}}{2} B\right) y^{\prime}+C=0$. The line l will be invariant iff $\frac{\sqrt{3}}{2} A+\frac{1}{2} B=0$ and $-\frac{3}{2} A-\frac{\sqrt{3}}{2} B=0$. That is line l will be invariant iff $A=-\frac{\sqrt{3}}{3} B$. So, lines of the form $\left[\begin{array}{lll}-\sqrt{3} & 3 & c\end{array}\right]\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]=0$ for any $c \in \mathrm{R}$ are invariant under T. So, all lines with slope $\frac{\sqrt{3}}{3}$ are invariant under T.
(See Example 4.6.5 in the textbook.)

