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MATH 406 Sample Exercises 
 
Example 1: 
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If T T T3 2 1� � ,   then T
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Are any points invariant under T3? 
 

Are there any points such that  T
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(1) is equivalent to  (2)  
� � � �

� � � �

1 1 4
1 1 3

x y

x y
. (2) is equivalent to (3)  

� � � �

� � �

1 1 4
0 0 7

x y

x y
. 

 
System (3) is inconsistent.  So, there can be no invariant points under T3. 
 
Are any lines invariant under T3? 
 
Method 1:  

We note that T
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Suppose 
1 0 3
0 1 4
0 0 1 1 1
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The image of the line Ax + By + C = 0 under T3 becomes A(y’-3) + B(x’- 4) + C = 0.  After simplification we 
see that the image of Ax + By + C = 0 becomes Bx’ + Ay’ + (C – 3A – 4B) = 0.  So, the line Ax + By + C = 0 is 
invariant iff A = B and 3A + 4B = 0.  That last condition implies that each of A, B, C must be zero.  But we 
cannot have each of A, B, C zero and have an equation for a line, so there can be no invariant lines under T3. 
 
 



Method 2:  In this method we appeal to Theorem 4.2.4 and seek u u u1 2 3  such that  

(4) u u u k u u u1 2 3 1 2 3
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(4) is equivalent to u u u u u k u u u2 1 1 2 3 1 2 33 4� � � � .  
 
Setting k = 1 we obtain u1 = u2 and -3u1 = 4u2.  So, u1 = u2 = 0 and u u u1 2 3  cannot represent a line. 
Hence, there are no invariant lines under T3. 
 
Example 2: 

Find all invariant lines under T defined by T
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Note the matrix for T-1 is 
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given by A x y B x y C( ' ' ) ( ' ' ) .
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(See Example 4.6.5 in the textbook.) 
 


