MATH 406 Supplementary Notes for Section 3.2

Let E denote the Euclidean plane and $\mathrm{P} \in E$. The set $E-\{\mathrm{P}\}$ is called a punctured plane.

Definition of Circular Inversion

Let C be a circle with center at P and radius r . The inversion of $\boldsymbol{E}-\{\boldsymbol{P}\}$ in the circle \boldsymbol{C} is a mapping

$$
f: E-\{\mathrm{P}\} \rightarrow E-\{\mathrm{P}\}
$$

that associates each point $\mathrm{A} \in E-\{\mathrm{P}\}$ with a point $\mathrm{A}^{\prime} \in E-\{\mathrm{P}\}$ such that A^{\prime} lies on the ray OA and $\mathrm{OA} \cdot \mathrm{OA}^{\prime}=\mathrm{r}^{2}$.

Constructing Inverse Points for Points A Inside Circle C

Construct ray PA.
Construct line h perpendicular to ray AP at A.
Label intersections of line h with circle $C \mathrm{X}$ and Y respectively.
Construct segments PX and PX.
Construct line i perpendicular to segment PX at X .
Construct line j perpendicular to segment PY at Y.
The intersection of lines i and j is the inverse point A^{\prime}.

Optional Exercise:

Prove that the construction outlined above does indeed produce A' as claimed.

Optional Exercise:

Explain, illustrate and prove, how to construct inverse points for points A outside of Circle C.

Given a circle C and points A and B inside C, construct a circle C ' containing points A and B that is orthogonal to C.

Construct point D so that D is the image of B under inversion in the circle C .
Construct the circle C' passing through the points A, B, and C .
C^{\prime} is orthogonal to C and C^{\prime} contains A and B .

