Some Notes for Sections 4.2 & 4.3

The Euclidean plane, denoted by E^2 , is $\{(x,y,1): x, y \in R\}$. We will denote elements of E^2 by

column vectors $\begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$.

A transformation $T: E^2 \to E^2$ is a **linear transformation of E^2** iff $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$ for each \mathbf{u} , $\mathbf{v} \in E^2$ and $T(\lambda \mathbf{u}) = \lambda T(\mathbf{u})$ for each $\lambda \in \mathbf{R}$ and $\mathbf{u} \in E^2$.

 $T: E^2 \rightarrow E^2$ is an **invertible transformation of E^2** iff it is 1-1 and onto E^2 .

Many transformations $T: E^2 \to E^2$ can be defined by a rule of the form $T(\mathbf{u}) = A\mathbf{u}$ where A is a 3 x 3 matrix of the form

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ 0 & 0 & 1 \end{bmatrix} \text{ where } a_{ij} \in \mathbf{R}.$$

A is called the **matrix representation** for *T*. For some matrices A, *T* is a linear transformation.

So, if
$$\mathbf{u} = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
, then $T(\mathbf{u}) = A\mathbf{u} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$.

Write matrix representations for each of the following transformations of E^2 .

Translation (slide) defined by (e,f) Counter clockwise rotation through θ about the origin

Reflection in the y-axis

Reflection in the x-axis

Reflection in the line y = x

Reflection in the line y = -x

Use both geometric thinking and matrix methods to find the image of the unit square under each of the following transformations.

 T_1 : a counter clockwise rotation of 60^0 about the origin.

 T_2 : a translation through (2,1) followed by a reflection through the line y = -x.

Specify the inverse of each of the transformations T_1 and T_2 .