Some Notes for Sections 4.2 \& 4.3

The Euclidean plane, denoted by E^{2}, is $\{(\mathrm{x}, \mathrm{y}, 1): \mathrm{x}, \mathrm{y} \in \mathrm{R}\}$. We will denote elements of E^{2} by column vectors $\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]$.

A transformation $T: \mathrm{E}^{2} \rightarrow \mathrm{E}^{2}$ is a linear transformation of $\mathbf{E}^{\mathbf{2}}$ iff $T(\mathbf{u}+\mathbf{v})=T(\mathbf{u})+T(\mathbf{v})$ for each \mathbf{u}, $\mathbf{v} \in \mathrm{E}^{2}$ and $T(\lambda \mathbf{u})=\lambda T(\mathbf{u})$ for each $\lambda \in \mathrm{R}$ and $\mathbf{u} \in \mathrm{E}^{2}$.
$T: \mathrm{E}^{2} \rightarrow \mathrm{E}^{2}$ is an invertible transformation of \mathbf{E}^{2} iff it is 1-1 and onto E^{2}.
Many transformations $T: \mathrm{E}^{2} \rightarrow \mathrm{E}^{2}$ can be defined by a rule of the form $T(\mathbf{u})=\mathrm{A} \mathbf{u}$ where A is a 3×3 matrix of the form

$$
\mathrm{A}=\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
0 & 0 & 1
\end{array}\right] \text { where } a_{\mathrm{ij}} \in \mathrm{R}
$$

A is called the matrix representation for T. For some matrices A, T is a linear transformation.
So, if $\mathbf{u}=\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]$, then $T(\mathbf{u})=\mathbf{A} \mathbf{u}=\left[\begin{array}{ccc}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]$.
Write matrix representations for each of the following transformations of E^{2}.
Translation (slide) defined by (e,f) Counter clockwise rotation through θ about the origin

Reflection in the y -axis
Reflection in the x -axis

Reflection in the line $y=x$
Reflection in the line $y=-x$

Use both geometric thinking and matrix methods to find the image of the unit square under each of the following transformations.
T_{1} : a counter clockwise rotation of 60° about the origin.

T_{2} : a translation through $(2,1)$ followed by a reflection through the line $\mathrm{y}=-\mathrm{x}$.

Specify the inverse of each of the transformations T_{1} and T_{2}.

