Find all invariant lines under the transformation $\left.\boldsymbol{T}_{2}\left(\begin{array}{l}x \\ y \\ 1\end{array}\right]\right)=\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]$.
\mathbf{T}_{2} is a reflection in the line $\left[\begin{array}{lll}-1 & 1 & 0\end{array}\right]\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]=0 \quad$; $\left.\boldsymbol{\operatorname { s o }} \boldsymbol{T}_{2} \mathbf{- 1}\left(\begin{array}{l}x \\ y \\ 1\end{array}\right]\right)=\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]$.
Applying Theorem 4.2.4 to this situation, we seek $\left[\begin{array}{lll}u_{1} & u_{2} & u_{3}\end{array}\right]\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]=k\left[\begin{array}{lll}u_{1} & u_{2} & u_{3}\end{array}\right]$ for an arbitrary non-zero constant k.
$\left[\begin{array}{lll}u_{1} & u_{2} & u_{3}\end{array}\right]\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{lll}u_{1} & u_{2} & u_{3}\end{array}\right]$ if $\left[\begin{array}{lll}u_{2} & u_{1} & u_{3}\end{array}\right]=\left[\begin{array}{lll}u_{1} & u_{2} & u_{3}\end{array}\right]$.
That is if $u_{2}=u_{1}$ and $u_{1}=u_{2}$ and $u_{3}=u_{3}$.
Hence any line with equation of the form $k\left[\begin{array}{lll}1 & 1 & l\end{array}\right]\left[\begin{array}{l}y \\ y \\ 1\end{array}\right]=0$ where \boldsymbol{k} is an arbitrary nonzero constant and l is an arbitrary constant is invariant under \boldsymbol{T}_{2}. Those are simply the lines with equations, in standard form, of the form $k x+k y+k l=0$ where k and l are arbitrary constants and k is not zero. These are all lines perpendicular to the line $y=x$. In our previous exercise, we showed that points on the line $y=x$ are invariant. So, the line $\mathbf{y}=\mathbf{x}$, or $\left[\begin{array}{lll}-1 & 1 & 0\end{array}\right]\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]=0$, is also invariant under \boldsymbol{T}_{2}.
Consequently, the lines $y=x$ and all those of the form $y=-x+c$ for some constant c are invariant under \boldsymbol{T}_{2}. Alternatively, the lines
$\left[\begin{array}{lll}-1 & 1 & 0\end{array}\right]\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]=0$ and $\left[\begin{array}{lll}1 & 1 & c\end{array}\right]\left[\begin{array}{l}y \\ y \\ 1\end{array}\right]=0$ for any constant \boldsymbol{c} are invariant under \boldsymbol{T}_{2}.

