LP Problems & Duality

Given an $m \times n$ matrix **A**, an *m*-vector **b**, and an *n*-vector **c**, the *standard maximum problem* determined by **A**, **b**, and **c**, denoted by SMP[**A**, **b**, **c**] is the problem

(*)	maximize	х·с
	subject to	$\mathbf{x} \ge 0$ and $\mathbf{A}\mathbf{x} \le \mathbf{b}$.

The *feasible set* for this SMP is $\{x \in \mathbb{R}^n : x \ge 0 \text{ and } Ax \le b\}$. The function $x \cdot c$ is called the *objective function* for the problem.

The *dual* of the SMP[A, b, c] is the problem

(**) minimize $\mathbf{y} \cdot \mathbf{b}$ subject to $\mathbf{y} \ge \mathbf{0}$ and $\mathbf{A}^T \mathbf{y} \ge \mathbf{c}$.

This dual problem (**) is an example of a standard minimum problem. This standard minimum problem may be denoted by smp[\mathbf{A}^T , **c**, **b**]. The *feasible set* for this smp is { $\mathbf{y} \in \mathbf{R}^m : \mathbf{y} \ge \mathbf{0}$ and $\mathbf{A}^T \mathbf{y} \ge \mathbf{c}$ }. The function $\mathbf{y} \cdot \mathbf{b}$ is called the *objective function* for the problem.

Example: Let $\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} 5 \\ 12 \end{bmatrix}$, $\mathbf{c} = \begin{bmatrix} 5 \\ 8 \end{bmatrix}$.

a. Formulate the SMP[\mathbf{A} , \mathbf{b} , \mathbf{c}] and its dual smp[\mathbf{A}^T , \mathbf{c} , \mathbf{b}].

b. Solve both the primal SMP and its dual by a graphing method.

c. Solve the SMP problem using a computer.