We consider a system that can be one of N possible *states* $S = \{s_1, s_2, ..., s_N\}$ and we observe the system at *n* successive times. If the system is in state s_i at the k^{th} observation and in state s_j at the $(k+1)^{th}$ observation, we say the process has made a transition from s_i to s_j at the k^{th} observation, *trial*, *step*, or *stage* of the process.

Let p_{ij} be the conditional probability that a system in s_i at the k^{th} observation is in state s_j at the $(k+1)^{th}$ observation, i, j = 1, 2, ..., N. These probabilities are *transition probabilities*. A process (system) is a *Markov chain (MCP)* if the p_{ij} 's depend only on i and j, the states occupied on the k^{th} and $(k+1)^{th}$ observations.

The *N* x *N* matrix $\mathbf{P} = (p_{ij})$ is the *transition matrix* for the MCP. Each row of **P** is a probability vector.

Let $p_{ij}(m)$ be the conditional probability that a system in s_i initially is in s_j on the m^{th} observation.

We denote the $N \times N$ matrix $(p_{ij}(m))$ by $\mathbf{P}(m)$.

$$\mathbf{P}(m) = \mathbf{P}^m$$

Let **P** be the transition matrix for a MCP, if there is an integer $r \ge 1$ such the **P**^r has only positive entries, then the Markov chain is *regular*.

Exercise 1: Suppose that the matrices \mathbf{P}_1 , \mathbf{P}_2 , and \mathbf{P}_3 are transition matrices for MCP's. Which, if any, of those processes are regular?

$$\mathbf{P}_{1} = \begin{bmatrix} 1 & 0 & 0 \\ 0.3 & 0.7 & 0 \\ 0 & 0.4 & 0.6 \end{bmatrix}; \mathbf{P}_{2} = \begin{bmatrix} 0.5 & 0 & 0.5 \\ 0.2 & 0.5 & 0.3 \\ 0.5 & 0.5 & 0 \end{bmatrix}; \mathbf{P}_{3} = \begin{bmatrix} 0 & 0.5 & 0 & 0.5 \\ 0.5 & 0 & 0.5 & 0 \\ 0 & 0.5 & 0 & 0.5 \\ 0.5 & 0 & 0.5 & 0 \end{bmatrix}$$

Let \mathbf{P} be the transition matrix for a regular MCP, then there is a unique probability vector \mathbf{s} with positive coordinates such that

- -

$$\mathbf{sP} = \mathbf{s}$$
 and moreover $\lim_{n \to \infty} \mathbf{P}^n = \begin{bmatrix} s \\ \vdots \\ s \end{bmatrix}$.

The coordinates of the vector \mathbf{s} give the *stable probabilities* for the process and is also known as the *stationary vector* for the matrix \mathbf{P} .

A MCP is called *ergodic* if for every pair of states s_i and s_j there is an integer *m*, which depends on *i* and *j* such that $p_{ij}(m) > 0$.

Exercise 2: Which, if any, of the MCP's in *Exercise 1* are ergodic?

The *i*th state of a MCP is called *absorbing* if $p_{ii} = 1$.

A MCP is *absorbing* if it has at least one absorbing state and transition from each nonabsorbing state to some absorbing state is (eventually) possible.

Exercise 3: Which, if any, of the MCP's in *Exercise 1* are absorbing?

Consider the MCP with matrix \mathbf{P}_1 of *Exercise 1*. We calculate a few powers of \mathbf{P} .

Suppose we partition the matrix P_1 as follows

 $\mathbf{P}_{1} = \begin{bmatrix} I_{1} & O \\ R & Q \end{bmatrix} \text{ where } \mathbf{I}_{1} \text{ is the } l \ x \ l \text{ identity matrix, } \mathbf{O} \text{ is the } l \ x \ l \text{ zero matrix, } \mathbf{R} \text{ is the } 2 \ x \ l \text{ matrix} \\ \begin{bmatrix} 0.3 \\ 0 \end{bmatrix}, \text{ and } \mathbf{Q} \text{ is the } 2 \ x \ 2 \text{ matrix} \begin{bmatrix} 0.7 & 0 \\ 0.4 & 0.6 \end{bmatrix}. \text{ Now we calculate powers of } \mathbf{P}_{1} \text{ in terms of the sub$ $matrices } \mathbf{I}_{1}, \mathbf{O}, \mathbf{R}, \text{ and } \mathbf{Q}.$

$$\mathbf{P}_{1}^{2} = \begin{bmatrix} I_{1} & O \\ R & Q \end{bmatrix} \begin{bmatrix} I_{1} & O \\ R & Q \end{bmatrix} = \begin{bmatrix} I_{1} & O \\ R+QR & Q^{2} \end{bmatrix}$$
$$\mathbf{P}_{1}^{3} = \begin{bmatrix} I_{1} & O \\ R & Q \end{bmatrix} \begin{bmatrix} I_{1} & O \\ R+QR & Q^{2} \end{bmatrix} = \begin{bmatrix} I_{1} & O \\ R+QR+Q^{2}R & Q^{3} \end{bmatrix}$$
:

$$\mathbf{P}_{1}^{k} = \begin{bmatrix} I_{1} & O \\ R + QR + Q^{2}R + \dots + Q^{k-1}R & Q^{k} \end{bmatrix}$$

Can we make a conjecture about $lim_{k\to\infty} \mathbf{Q}^k$ and $lim_{k\to\infty} \mathbf{P}_1^k$?

Exercise 4: For and k = 1, 2, 3, ... let $\mathbf{R}_k = \mathbf{R} + \mathbf{Q}\mathbf{R} + \mathbf{Q}^2\mathbf{R} + ... + \mathbf{Q}^{k-1}\mathbf{R}$.

- a. Show that $(\mathbf{I}_2 \mathbf{Q})(\mathbf{I}_2 + \mathbf{Q} + \mathbf{Q}^2 + ... + \mathbf{Q}^{k-1}) = \mathbf{I}_2 \mathbf{Q}^k$.
- b. Can we establish that $(\mathbf{I}_2 \mathbf{Q})^{-1}$ is $\lim_{k\to\infty} (\mathbf{I}_2 + \mathbf{Q} + \mathbf{Q}^2 + ... + \mathbf{Q}^k)$?
- c. Can we establish that $(\mathbf{I}_2 \mathbf{Q})^{-1}\mathbf{R}$ is $\lim_{k\to\infty} \mathbf{R}_{k}$.
- d. If we let $\mathbf{N} = (\mathbf{I}_2 \mathbf{Q})^{-1}$, can we show that $\lim_{k \to \infty} \mathbf{P}_1^k = \begin{bmatrix} I_1 & O \\ NR & O \end{bmatrix}$?

The matrix N is called the *fundamental matrix* for the MCP with matrix P_1 .