
Markov Chain Processes (MCP) 

 

We consider a system that can be one of N possible states S = {s1, s2, …, sN} and we observe the 

system at n successive times.  If the system is in state si at the k
th

 observation and in state sj at the 

(k+1)
th

 observation, we say the process has made a transition from si to sj at the k
th

 observation, trial , 

step, or stage of the process.   

 

Let pij be the conditional probability that a system in si at the k
th

 observation is in state sj at the (k+1)
th

 

observation, i, j = 1, 2, …, N.  These probabilities are transition probabilities.  A process (system) is a 

Markov chain (MCP) if the pij’s depend only on i and j, the states occupied on the k
th

 and (k+1)
th

 

observations. 

 

The N x N matrix P = (pij) is the transition matrix for the MCP.  Each row of P is a probability vector.  

 

Let pij(m)  be the conditional probability that a system in si initially is in sj on the m
th

 observation. 

 

We denote the N x N matrix (pij(m)) by P(m). 

 

P(m) = P
m
 

 

Let P be the transition matrix for a MCP, if there is an integer r > 1 such the P
r
 has only positive 

entries, then the Markov chain is regular. 

 

Exercise 1:  Suppose that the matrices P1, P2, and P3 are transition matrices for MCP’s.  Which, if any, 

of those processes are regular? 
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Let P be the transition matrix for a regular MCP, then there is a unique probability vector s with 

positive coordinates such that  

sP = s and moreover limn→∞P
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The coordinates of the vector s give the stable probabilities for the process and is also known as the 

stationary vector for the matrix P. 

 

A MCP is called ergodic if for every pair of states si and sj there is an integer m, which depends on i 

and j such that pij (m) > 0. 

 

Exercise 2:  Which, if any, of the MCP’s in Exercise 1 are ergodic? 

 

The i
th

 state of a MCP is called absorbing if pii = 1. 

 

A MCP is absorbing if it has at least one absorbing state and transition from each nonabsorbing state 

to some absorbing state is (eventually) possible. 

 

Exercise 3:  Which, if any, of the MCP’s in Exercise 1 are absorbing? 



Consider the MCP with matrix P1 of Exercise 1.  We calculate a few powers of P. 
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Suppose we partition the matrix P1 as follows 

 

P1 = 
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 where I1 is the 1 x 1 identity matrix, O is the 1 x 1 zero matrix, R is the 2 x 1 matrix 
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.  Now we calculate powers of P1 in terms of the sub-

matrices I1, O, R, and Q. 
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Can we make a conjecture about limk→∞Q
k
 and limk→∞P1

k
? 

 

Exercise 4:  For and k = 1, 2, 3, … let Rk = R + QR + Q
2
R + … +Q

k-1
R. 

 

a. Show that (I2 – Q)(I2 + Q + Q
2
 + … + Q

k-1
) = I2 - Q

k
. 

 

b. Can we establish that (I2 – Q)
-1

 is limk→∞ (I2 + Q + Q
2
 + … + Q

k
)? 

 

c. Can we establish that (I2 – Q)
-1

R is limk→∞ Rk. 

 

d. If we let N = (I2 – Q)
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The matrix N is called the fundamental matrix for the MCP with matrix P1. 


