Markov Chains - Discussion Continued

Consider the absorbing MCP represented by the weighted digraph below.

Our convention is that the *canonical form* of the transition matrix of an absorbing MCP has states ordered so that the absorbing states are listed first. With this convention, the transition matrix \mathbf{P} will have the form.

$$\mathbf{P} = \begin{bmatrix} I & O \\ R & Q \end{bmatrix}.$$

We have seen that

$$\lim_{m\to\infty} \mathbf{P}^{\mathbf{m}} = \begin{bmatrix} I & O \\ NR & O \end{bmatrix}$$
 where $\mathbf{N} = (\mathbf{I} - \mathbf{Q})^{-1}$ and we call \mathbf{N} the fundamental

matrix for the process with matrix **P**.

Identify the canonical form for the transition matrix for the absorbing MCP represented by the diagram above.

In this example the fundamental matrix for the MCP is

$$\mathbf{N} = (\mathbf{I} - \mathbf{Q})^{-1} = \begin{bmatrix} ---- & ---- & ---- \\ ---- & ---- & ---- \end{bmatrix}$$

So,
$$\lim_{m\to\infty} \mathbf{P^m} = \begin{bmatrix} ---- & ---- & ---- & ---- \\ ---- & ---- & ---- & ---- \\ ---- & ---- & ---- & ---- \\ ---- & ---- & ---- & ---- \end{bmatrix}$$

There are some important results we gain from the fundamental matrix N.

 n_{ij} , the ij-entry of **N**, is the expected number of visits to the j^{th} nonabsorbing state given the process began in the i^{th} nonabsorbing state and continued until an absorbing state was reached. (See proof on p. 137) The sum of the entries in the i^{th} row of **N** is the expected number of transitions before an absorbing state is reached if the process began in the i^{th} nonabsorbing state.

The matrix $\mathbf{A} = \mathbf{NR}$ also provides significant information. The *ij-entry* of \mathbf{A} , \mathbf{a}_{ij} , is the probability that a process that began in the i^{th} nonabsorbing state is absorbed in the j^{th} absorbing state.

It is important to remember that in this discussion that the references to states i and j refer to the states of the matrix in canonical form.

Respond to the following questions about the absorbing MCP with transition matrix P.

- 1. Suppose the process begins in s_4 and runs until reaching an absorbing state.
 - a. What is the expected number of times the process will be in s_5 prior to absorption?
 - b. What is the expected number of transitions prior to absorption?
 - c. What is the probability of absorption into s_2 ?
- 2. Suppose the process begins in s_3 . What is the probability the process is in s_5 prior to absorption?