Let $y=F(x)$ for $x \in[a, b]$.
Suppose, $y_{1}=F\left(x_{1}\right)$ and $y_{2}=F\left(x_{2}\right)$ for $x_{1}<x_{2}$.
The change in $x, \Delta x=x_{2}-x_{1}$, and the change in $y, \Delta y=y_{2}-y_{1}$.

The average rate of change in y with respect to x over the interval $\left[\mathrm{x}_{1}, \mathrm{x}_{2}\right.$] is the ratio

$$
\Delta \mathbf{y} / \Delta \mathbf{x}
$$

The percent change in y with respect to x over the interval $\left[x_{1}, x_{2}\right]$ is

$$
100 * \frac{\left[F\left(x_{2}\right)-F\left(x_{1}\right)\right]}{F\left(x_{1}\right)}=100^{*}\left[\mathbf{y}_{2}-\mathbf{y}_{1}\right]=100^{*} \Delta y / y_{1}
$$

The average proportionate growth rate is the ratio

$$
\frac{[\Delta y / \Delta x]}{F\left(x_{1}\right)}=\frac{[\Delta y / \Delta x]}{y_{1}}
$$

The average proportionate growth rate is frequently called the relative growth rate.

