Chicken Pecking Problem

Consider a chicken yard containing n chickens, for some $n \in Z$, which has a well-defined pecking order. That is, for any pair of distinct chickens c_i and c_j , either c_i pecks c_i or c_i pecks c_i , and not both.

We write $c_i > c_i$ to mean c_i pecks c_i .

Also, we write $c_i >> c_j$ to mean there is a chicken c_k such that $c_i > c_k$ and $c_k > c_j$.

A chicken c_d is said to be dominant iff for all other chickens c_k , $c_d > c_k$ or $c_d >> c_k$.

Does a chicken yard with a well-defined pecking order necessarily have a dominant chicken? (Prove or disprove.)

Example

Suppose $C = \{C_1, C_2, C_3, C_4, C_5\}.$

Suppose a pecking order is defined by

$$C_1 > C_2, C_1 > C_4$$

 $C_2 > C_3, C_2 > C_4, C_2 > C_5$
 $C_3 > C_1, C_3 > C_4, C_3 > C_5$
 $C_4 > C_5$
 $C_5 > C_1$

We can represent the pecking relation with a digraph G or a matrix P.

	$\mathbf{C_1}$	$\mathbf{C_2}$	C_3	C_4	C_5
$\mathbf{C_1}$	0	1	0	1	0
C_1 C_2 C_3 C_4 C_5	0	0	1	1	1
\mathbf{C}_3	1	0	0	1	1
C_4	0	0	0	0	1
C_5	1	0	0	0	0