Chicken Pecking Problem Consider a chicken yard containing n chickens, for some $n \in Z$, which has a well-defined pecking order. That is, for any pair of distinct chickens c_i and c_j , either c_i pecks c_i or c_i pecks c_i , and not both. We write $c_i > c_i$ to mean c_i pecks c_i . Also, we write $c_i >> c_j$ to mean there is a chicken c_k such that $c_i > c_k$ and $c_k > c_j$. A chicken c_d is said to be dominant iff for all other chickens c_k , $c_d > c_k$ or $c_d >> c_k$. Does a chicken yard with a well-defined pecking order necessarily have a dominant chicken? (Prove or disprove.) ## Example Suppose $C = \{C_1, C_2, C_3, C_4, C_5\}.$ Suppose a pecking order is defined by $$C_1 > C_2, C_1 > C_4$$ $C_2 > C_3, C_2 > C_4, C_2 > C_5$ $C_3 > C_1, C_3 > C_4, C_3 > C_5$ $C_4 > C_5$ $C_5 > C_1$ We can represent the pecking relation with a digraph G or a matrix P. | | $\mathbf{C_1}$ | $\mathbf{C_2}$ | C_3 | C_4 | C_5 | |-------------------------------|----------------|----------------|-------|-------|-------| | $\mathbf{C_1}$ | 0 | 1 | 0 | 1 | 0 | | C_1 C_2 C_3 C_4 C_5 | 0 | 0 | 1 | 1 | 1 | | \mathbf{C}_3 | 1 | 0 | 0 | 1 | 1 | | C_4 | 0 | 0 | 0 | 0 | 1 | | C_5 | 1 | 0 | 0 | 0 | 0 | | | | | | | |