Some Function Concepts & Terminology – Corrected Version

A *function* f from a set X into a set Y, denoted by $f: X \to Y$, associates each $x \in X$ with a unique $y \in Y$. The unique y associated with x under f is denoted by f(x). The set X is called the *domain* of f, and the set Y is called the *codomain* of f. The set of all $y \in Y$ such that y = f(x) for some $x \in X$ is called the *range* of f.

A function f can be defined by a rule of correspondence.

Example 1: $f: Q \to Q$ might be defined by f(x) = 2x + 3 for each $x \in Q$.

A candidate for a function $f: X \to Y$ is well-defined iff for each $x_1, x_2 \in X$, if $x_1 = x_2$, then $f(x_1) = f(x_2)$.

Example 2: $f: \mathbb{R}^{\text{nonneg}} \to \mathbb{R}$ defined by f(x) = y such that $y^2 = x$ is *not* well-defined because in this case f(4) could be either 2 or -2. Hence, f cannot be a function.

Example 3: $g: Q \to Q$ defined by $g(x) = 3(x+1)^2$ is well-defined. To establish that g is well-defined we suppose $x_1, x_2 \in Q$ and $x_1 = x_2$. Now, $x_1 = x_2$ implies $x_1 + 1 = x_2 + 1$, which in turn implies $(x_1 + 1)^2 = (x_2 + 1)^2$, and that implies $3(x_1 + 1)^2 = 3(x_2 + 1)^2$. So, $g(x_1) = g(x_2)$, and g is well-defined.

A function $f: X \to Y$ is *onto* Y (or *surjective*) iff for each $y \in Y$ there exists an $x \in X$ such that f(x) = y.

Example 4: The function g of Example 3 is not onto Q because there exists no $x \in Q$ such that g(x) = -1.

Example 5: The function $f: Q \to Q$ such the f(x) = 2x + 3 of Example 1 is onto Q. To prove that f is onto Q we suppose $y \in Q$. Now, f(x) = y if 2x + 3 = y. So, f(x) = y if $x = \frac{1}{2}(y - 3)$, and by properties of Q, $\frac{1}{2}(y - 3) \in Q$. So, for this function, for any $y \in Q$ there does exist an $x = \frac{1}{2}(y - 3) \in Q$ such that f(x) = y. Hence, f is onto Q.

A function $f: X \to Y$ is *one-to-one* (or 1-1 or *injective*) iff for each $x_1, x_2 \in X, x_1 \neq x_2$ implies $f(x_1) \neq f(x_2)$. Equivalently, $f: X \to Y$ is *one-to-one* iff for each $x_1, x_2 \in X$, $f(x_1) = f(x_2)$ implies $x_1 = x_2$.

Example 6: The function g of Example 3 is not one-to-one because g(2) = 27 = g(-3).

Example 7: The function f Example 1 is one-to-one. To prove that f is one-to-one we suppose that $f(x_1) = f(x_2)$ for some arbitrary $x_1, x_2 \in \mathbb{Z}$. It follows that $2x_1 + 3 = 2x_2 + 3$. So, $2x_1 = 2x_2$ and $x_1 = x_2$. So, for this function, $f(x_1) = f(x_2)$ implies $x_1 = x_2$, and hence f is one-to one.

A function $f: X \to Y$ is *one-to-one and onto* Y (or *bijective*) iff f is both one-to-one and onto Y.

Example 8: The function f of Example 1 is one-to-one and onto Q.