Discrete Math - Session 33

Example 1: Recall that a function $\mathrm{f}: \mathrm{X} \mu \mathrm{Y}$ (from X into Y) is onto S , where $\mathrm{S} f \mathrm{Y}$ iff úyOS õx0X" $f(x)=y$. Show that $f: Q \mu Q$ defined by $f(x)=5-3 x$ is onto Q.

Example 2: Recall that a function $\mathrm{f}: \mathrm{X} \mu \mathrm{Y}$ is $1-1$ iff $\mathrm{u}_{1}, \mathrm{x}_{2} 0 \mathrm{X}$ if $\mathrm{f}\left(\mathrm{x}_{1}\right)=\mathrm{f}\left(\mathrm{x}_{2}\right)$, then $\mathrm{x}_{1}=\mathrm{x}_{2}$. Show that the function \boldsymbol{f} defined in Example 1 is 1-1.

Relations

Suppose A and B are sets. A relation \boldsymbol{R} from A to \mathbf{B} is a subset of A HB. Given an ordered pair (x,y) 0 A HB, we say x is related to y by \boldsymbol{R}, denoted by x $\boldsymbol{R} y$, iff (x,y) $0 \boldsymbol{R}$.

Example 3: Let $\mathrm{A}=\{0,1,2,3,4\}$ and $\mathrm{B}=\{1,2,3,4,5\}$, suppose \boldsymbol{R} is the relation from A to B defined by $\boldsymbol{R}=\{(\mathrm{x}, \mathrm{y}): \mathrm{x}<\mathrm{y}\}$. That is, $\mathrm{x} \boldsymbol{R} \mathrm{y}$ iff $(\mathrm{x}, \mathrm{y}) 0 \boldsymbol{R}$. Or equivalently, úx0AúyOB, x \boldsymbol{R} y iff $\mathrm{x}<\mathrm{y}$.

List the ordered pairs in \boldsymbol{R}.

Example 4: Consider the relation $\boldsymbol{C}_{\mathbf{4}}$ from Z to Z defined as follows: ú $(\mathrm{m}, \mathrm{n}) 0 \mathrm{Z} \mathrm{HZ}, \mathrm{m} \boldsymbol{C}_{4} \mathrm{n}$ iff $4^{*}(\mathrm{~m}-\mathrm{n})$. Now, describe the set of all m Z such that $(\mathrm{m}, 3) 0 \boldsymbol{C}_{\boldsymbol{4}}$. That is, define by the listing method $\left\{\mathrm{mOZ}: \mathrm{m}_{\boldsymbol{C}} 3\right\}$.

Example 5: Consider the relation \boldsymbol{F} from Q to Q defined by (x, y) $0 \boldsymbol{F}$ iff $\mathrm{y}=\boldsymbol{f}(\mathrm{x})$ where \boldsymbol{f} is the function of Example 1. Equivalently, $\mathrm{x} \boldsymbol{F}$ y iff $\mathrm{y}=5-3 \mathrm{x}$. Describe the set of ordered pairs in \boldsymbol{F}.

