Discrete
Mathematics Session 3
(Best viewed with Internet
Explorer)
 
Complete
the truth table for “exclusive or.”
 
| p | q | p w q | p v q | ~( p v q) | (p w q) v ~( p v q) | 
|   |   |   |   |   |   | 
|   |   |   |   |   |   | 
|   |   |   |   |   |   | 
|   |   |   |   |   |   | 
 
(p
w q) v ~( p v q) may be abbreviated p XOR
q or as p ¿ q
 
 
Two
statement forms are called logically equivalent if, and only if, they
have identical truth values for each possible substitution for their statement
variables.  Logical equivalence of p and
q is denoted by p /q.
 
Show
that -(p ¸ q) / -p º -q
 
| p | q | ~p | ~q | p
  Λ q | ~(p
  Λ q) | ~p
  V ~q | 
|   |   |   |   |   |   |   | 
|   |   |   |   |   |   |   | 
|   |   |   |   |   |   |   | 
|   |   |   |   |   |   |   | 
 
 
Complete
a truth table for [(p Λ ~q) V ~p] V q
 
Tautology
 
Contradiction
 
Table
of Logical Equivalences (p. 14)
 
Show
that (p Λ q) Λ  (p Λ ~q) / c
 
View
notes for another session.
View
the home page for this course.