MATH 210 Discrete Math - Session 20

We define a sequence a_0 , a_1 , a_2 , a_3 , ... as follows:

(*)
$$a_0 = 3$$

 $a_k = a_{k-1} + 2k$ for all integers $k \ge 1$.

Write the first five terms of the sequence.

k	0	1	2	3	4
a_k					

Use mathematical induction to show that the terms of the sequence satisfy the formula (**) $a_n = n^2 + n + 3$, for all integers $n \ge 0$.

- (1) The formula (**) holds for n = 0: For n = 0 the formula gives $0^2 + 0 + 3 = 3$. But $a_0 = 3$ by the definition of the sequence. Hence the formula (**) holds for n = 0.
- (2) If the formula (**) holds for n = k then it holds for n = k + 1: Let k be an integer with $k \ge 0$ and suppose that $a_k = k^2 + k + 3$. [This is the inductive hypothesis.] We must now show that $a_{k+1} = (k+1)^2 + (k+1) + 3$. But

$$\begin{array}{ll} a_{k+1}=a_k+2(k+1) & \text{by definition of the sequence} \\ &=(k^2+k+3)+2(k+1) & \text{by the inductive hypothesis} \\ &=k^2+3k+5 & \text{by regrouping} \\ &=(k^2+2k+1)+(k+1)+3 & \text{by regrouping} \\ &=(k+1)^2+(k+1)+3 & \text{by regrouping} \end{array}$$

[This is what was to be shown.] So, if the formula (**) holds for n = k, then the formula (**) holds for n = k + 1.

So, by the basis step (1) and the inductive step (2), and the PMI, the formula (**) holds for all terms of the sequence (*).

Prove: (***) $\forall n \in \mathbb{Z}^+$ if $n \ge 5$, then $n^2 < 2^n$.

Basis Step:

The proposition (***) is true for n=5: $5^2 = 25 < 32 = 2^5$. [This is the basis step.]

Inductive Step:

If (***) is true for n = k then it is true for n = k+1: Suppose $k^2 \le 2^k$ for an integer $k \ge 1$. We must show that it follows that $(k+1)^2 < 2^{k+1}$. Now,

$$(k+1)^2 = k^2 + 2k + 1$$
 by algebra by inductive hypothesis $k^2 < 2^k$ and
$$(2k+1) < 2^k \text{ by Example 4.3.2.}$$

[This is what we needed to show.] By the basis and inductive steps and the PMI (***) is true.