Overview of Set Theory

Undefined Terms:

objects – set, element relation – set membership

Definitions:

special sets: universal set, empty set

special objects: ordered pair, ordered n-tuple special relation: equality of ordered n-tuples

relations – subset, equality of sets

binary operations – intersection, union, difference or relative complement,

Cartesian product

unary operation - complement

Theorems:

For all A, B, C subsets of a universal set U,

Some Subset Relations

1. $A \cap B \subset A$ and $A \cap B \subset B$ (Inclusion of Intersection)

2. $A \subset A \cup B$ and $B \subset A \cup B$ (Inclusion in Union)

3. If $A \subseteq B$ and $B \subseteq C$ then $A \subseteq C$ (Transitivity of Subset Relation)

Set Identities

4. $A \cap B = B \cap C$ and $A \cup B = B \cup A$ (Commutative Laws)

5. $(A \cap B) \cap C = A \cap (B \cap C)$ and (Associative Laws) $(A \cup B) \cup C = A \cup (B \cup C)$

6. $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ (Distributive Laws) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

7. $A \cap U = A$ (Identity for \cap)

 $(\mathbf{A}^{\mathbf{c}})^{\mathbf{c}} = \mathbf{A}$ 8.

(Double Complement Law) $A \cap A = A$ and $A \cup A = A$ 9. (Idempotent Laws)

 $(\mathbf{A} \cup \mathbf{B})^{c} = \mathbf{A}^{c} \cap \mathbf{B}^{c}$ and 10. (De Morgan's Laws) $(\mathbf{A} \cap \mathbf{B})^{c} = \mathbf{A}^{c} \cup \mathbf{B}^{c}$

11. $\mathbf{A} \cup \mathbf{U} = \mathbf{U}$ (Universal bound for \cup)

 $A \cup (A \cap B) = A$ and (Absorption Laws) 12. $A \cap (A \cup B) = A$

 $A - B = A \cap B^c$ 13. (Alternative Representation)

Some More Theorems

- 14. For any sets A and B, if $A \subseteq B$ then
 - (a) $A \cap B = A$ and (b) $A \cup B = B$.
- 15. If A is any set, $N \subset A$.
- 16. For any subset A of a universal set U,

$$\mathbf{a.} \qquad \mathbf{A} \, \cup \, \mathbf{N} = \mathbf{A}$$

b. $A \cap A^c = N \text{ and } A \cup A^c = U$

c.
$$A \cap N = N$$
 (Universal bound for \cap)

(Identity for \cup)

- 17. $U^c = N$ and $N^c = U$
- 18. For any sets A and B, (A B) and B are disjoint.
- 19. For all sets A and B, if $A \subseteq B$ then $P(A) \subseteq P(B)$.
- 20. For all in tegers $n \ge 0$ and sets X, if X has exactly n elements, then P(X) has exactly 2^n elements.

Boolean Algebras

A Boolean algebra (S, =, +, *) is a set S together with an equality relation (=) and two binary operations (+ and *) such that the following properties hold:

For all a, b, c in S,

- 0. S is closed under both + and *
- 1. a + b = b + a and a * b = b * a
- 2. (a + b) + c = a + (b + c) and (a*b)*c = a*(b*c)
- 3. a + (b*c) = (a+b)*(a+c) and a*(b+c) = (a*b) + (a*c)
- 4. There exists distinct elements i and e in S such that a + i = a and a * e = a
- 5. For each a is S there exists an element a^{-1} such that $a * a^{-1} = e$ and $a + a^{-1} = i$.

Theorem. Suppose S is the set of all subsets of a nonempty set U, that is S = P(U), then $(S, =, \mathbf{C}, \mathbf{1})$ is a Boolean algebra.