On what basis do we claim the empty set is a subset of each set?

Consider the conditional statement form
(*) úx 0 D , if $\mathbf{P}(\mathbf{x})$ then $\mathbf{Q}(\mathrm{x})$

Its contrapositive is the statement \qquad .

Its converse is the statement \qquad .

Its inverse is the statement \qquad .

Statement (*) means "úx 0 D, \qquad is a sufficient condition for \qquad ."

Statement (*) means "úx OD, \qquad is a necessary condition for \qquad .$"$

Statement (*) means "úx 0 D, \qquad only if \qquad .

Prove: The sum of two even numbers is even. úm $0 Z$ ún $0 Z$, if m is even and n is even then $m+n$ is even.

Proof: (1) $\quad m$ and n are arbitrary even integers.
(2) új $0 \mathrm{Z}, \mathrm{j}$ is even iff $\tilde{\mathbf{o} k} \mathrm{OZ}$ such that $\mathrm{j}=2 \mathrm{k}$
(3) m is an even integer
(4) n is an even integer
(5) $m=2 r$ for some OZ
(6) $n=2 s$ for some $s 0 Z$
(7) $m+n=m+n$
(8) $m+n=2 r+2 s$
(9) $2 r+2 s=2(r+s)$
(10) $\mathrm{m}+\mathrm{n}=2(\mathrm{r}+\mathrm{s})$
(11) $(r+s) 0 Z$
(12) $\mathbf{a} \mathbf{m}+\mathrm{n}$ is even
(13) \mathbf{a} if m is even and n is even then $m+n$ is even

Consequently,
úm $0 Z$ ún $0 Z$, if m is even and n is even then $m+n$ is even.

Alternative Paragraph Proof:

Suppose m and n are arbitrary even integers. By the definition of even integer, there exists integers r and s such that $m=2 r$ and $n=2 s$. Now, $m+n=2 r+2 s=2(r+s)$.
But $(r+s)$ is an integer; so $m+n$ is even. Hence, if m and n are arbitrary even integers, then $m+n$ is aslo an even iteger. Consequently, úm $0 Z$ ún $0 Z$, if m is even and n is even then $\mathbf{m}+\mathbf{n}$ is even.

