MATH 210 Discrete Mathematics – Session 9

On what basis do we claim the empty set is a subset of each set?

(2)		e conditional statement form D, if $P(x)$ then $Q(x)$		
Statement (*) means "	Its contrapo	sitive is the statement		
Statement (*) means " ex 0 D, is a sufficient condition for" Statement (*) means " ex 0 D, is a necessary condition for" Statement (*) means " ex 0 D, only if Prove: The sum of two even numbers is even. em 0 Z en 0 Z, if m is even and n is even then m + n is even. Proof: (1) m and n are arbitrary even integers. (2) ej 0 Z, j is even iff > k 0 Z such that j = 2k Definition (3) m is an even integer (4) n is an even integer (5) m = 2r for some r 0 Z (6) n = 2s for some s 0 Z (7) m + n = m + n (8) m + n = 2r + 2s (9) 2r + 2s = 2(r + s) (10) m + n = 2(r + s) (11) (r + s) 0 Z (12) ^ m + n is even (13) ^ if m is even and n is even then m + n is even Consequently,	Its converse	is the statement		
Statement (*) means "ex 0 D, is a necessary condition for" Statement (*) means "ex 0 D, only if Prove: The sum of two even numbers is even. em 0 Z en 0 Z, if m is even and n is even then m + n is even. Proof: (1) m and n are arbitrary even integers. (2) e j 0 Z, j is even iff > k 0 Z such that j = 2k (3) m is an even integer (4) n is an even integer (5) m = 2r for some r 0 Z (6) n = 2s for some s 0 Z (7) m + n = m + n (8) m + n = 2r + 2s (9) 2r + 2s = 2(r + s) (10) m + n = 2(r + s) (11) (r + s) 0 Z (12) ^ m + n is even (13) ^ if m is even and n is even then m + n is even Consequently,	Its inverse is	s the statement	·	
Statement (*) means " e x 0 D,	Statement (*) means " e x 0 D, is	a sufficient condition for	.,,,
Prove: The sum of two even numbers is even. @m 0 Z @n 0 Z, if m is even and n is even then m + n is even. Proof: (1) m and n are arbitrary even integers. Premise (2) @j 0 Z, j is even iff > k 0 Z such that j = 2k Definition (3) m is an even integer (4) n is an even integer (5) m = 2r for some r 0 Z (6) n = 2s for some s 0 Z (7) m + n = m + n (8) m + n = 2r + 2s (9) 2r + 2s = 2(r + s) (10) m + n = 2(r + s) (11) (r + s) 0 Z (12) ^ m + n is even (13) ^ if m is even and n is even then m + n is even Consequently,	Statement (*) means " e x 0 D, is	a necessary condition for	•"
### O Z	Statement (*) means " e x 0 D, or	nly if	
### O Z		-		
(2)			even.	
Consequently,	(3) (4) (5) (6) (7) (8) (9) (10) (11) (12)	 (2)		Definition
	` ′	equently,		

Alternative Paragraph Proof:

Suppose m and n are arbitrary even integers. By the definition of even integer, there exists integers r and s such that m = 2r and n = 2s. Now, m + n = 2r + 2s = 2(r + s). But (r + s) is an integer; so m + n is even. Hence, if m and n are arbitrary even integers, then m + n is aslo an even iteger. Consequently, $\mathbf{e}m \mathbf{0} \mathbf{Z} \mathbf{e}n \mathbf{0} \mathbf{Z}$, if m is even and n is even then m + n is even.