Chapter 5 Section 2

7) Prove by mathematical induction that for any integer $n \ge 1$ and all sets $A_1, A_2, ...A_n$ and $B_1, (A_1 - B_1) \cap (A_2 - B_1) \cap ... \cap (A_n - B_n) = (A_1 \cap A_2 \cap ... \cap A_n_n) - B_n$.

Assume that if $n \ge 3$ and $C_1, C_2, ...C_n$ are any sets, $C_1 \cap C_2 \cap ... \cap C_n$ is defined to be $(C_1 \cap C_2 \cap ... \cap C_{n-1}) \cap C_n$.

Proof:

1) Basis step

The formula holds for n = 1.

For n = 1 the formula is $A_1 - B = A_1 - B$ which is clearly true.

2) Inductive step

If the formula holds for n = k then it hold for n = k + 1.

Let k be an integer with $k \ge 1$, and suppose the formula holds for n = k. I must show that the formula holds for n = k + 1; that is for any sets A_1 , A_2 , ... A_{k+1} , and B.

$$(A_1 - B) \cap (A_2 - B) \cap ... \cap (A_{k+1} - B) = (A_1 \cap A_2 \cap ... \cap A_{k+1}) - B$$

But

$$(A_{1} - B) \cap (A_{2} - B) \cap ... \cap (A_{k+1} - B) = [(A_{1} - B) \cap (A_{2} - B) \cap ... (A_{k} - B)] \cap (A_{k+1} - B)$$

$$= [(A_{1} \cap A_{2} \cap ... \cap A_{k}) - B] \cap (A_{k+1} - B)$$

$$= By \text{ the inductive hypothesis}$$

$$= [(A_{1} \cap A_{2} \cap ... \cap A_{k}) \cap A_{k+1}] - B$$

$$= (A_{1} \cap A_{2} \cap ... \cap A_{k} \cap A_{k+1}) - B$$
By assumption

By assumption

Hence, the statement, "For any integer $n \ge 1$ and all sets $A_1, A_2, \dots A_n$ and B, ($A_1 - B$) \cap ($A_2 - B$) \cap ... \cap ($A_n - B$) = ($A_1 \cap A_2 \cap \dots \cap A_n$) - B," is true by steps 1 and 2 and the Principle of Mathematical Induction.